题目内容
【题目】已知为坐标原点,椭圆的左,右焦点分别为,,点又恰为抛物线的焦点,以为直径的圆与椭圆仅有两个公共点.
(1)求椭圆的标准方程;
(2)若直线与相交于,两点,记点,到直线的距离分别为,,.直线与相交于,两点,记,的面积分别为,.
(ⅰ)证明:的周长为定值;
(ⅱ)求的最大值.
【答案】(1);(2)(i)详见解析;(ii).
【解析】
(1)由已知求得,可得,又以为直径的圆与椭圆仅有两个公共点,知,从而求得与的值,则答案可求;
(2)由题意,为抛物线的准线,由抛物线的定义知,,结合,可知等号当且仅当,,三点共线时成立.可得直线过定点,根据椭圆定义即可证明为定值;
若直线的斜率不存在,则直线的方程为,求出与可得;若直线的斜率存在,可设直线方程为,,,,,,,,,方便联立直线方程与抛物线方程,直线方程与椭圆方程,利用弦长公式求得,,可得,由此可求的最大值.
解:(1)因为为抛物线的焦点,故
所以
又因为以为直径的圆与椭圆仅有两个公共点知:
所以,
所以椭圆的标准方程为:
(2)(ⅰ)由题知,因为为抛物线的准线
由抛物线的定义知:
又因为,等号当仅当,,三点共线时成立
所以直线过定点
根据椭圆定义得:
(ⅱ)若直线的斜率不存在,则直线的方程为
因为,,所以
若直线的斜率存在,则可设直线,设,
由得,
所以,
设,,
由得,
则,
所以
则
综上知:的最大值等于
【题目】近年电子商务蓬勃发展,现从某电子商务平台评价系统中随机选出200次成功交易,并对其评价进行统计,统计结果显示:网购者对商品的满意率为0.70,对快递的满意率为0.60,其中对商品和快递都满意的交易为80次.
(1)根据已知条件完成下面的2×2列联表,并回答在犯错误的概率不超过0.10的前提下,能否认为“网购者对商品满意与对快递满意之间有关系”?
对快递满意 | 对快递不满意 | 合计 | |
对商品满意 | 80 | ||
对商品不满意 | |||
合计 | 200 |
(2)为进一步提高购物者的满意度,平台按分层抽样方法从200次交易中抽取10次交易进行问卷调查,详细了解满意与否的具体原因,并在这10次交易中再随机抽取2次进行电话回访,听取购物者意见.求电话回访的2次交易至少有一次对商品和快递都满意的概率.
附:(其中为样本容量)
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |