ÌâÄ¿ÄÚÈÝ

5£®°ëÍÖÔ²$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1£¨y¡Ý0£©$ºÍ°ëÔ²x2+y2=b2£¨y¡Ü0£©×é³ÉÇúÏßC£¬ÆäÖÐa£¾b£¾0£¬ÈçͼËùʾ£¬ÇúÏßC½»xÖáÓÚA£¬BÁ½µã£¬½»yÖḺ°ëÖáÓÚµãG£®ÍÖÔ²$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬FÊÇËüµÄÒ»¸ö½¹µã£¬µãPÊÇÇúÏßCλÓÚxÖáÉÏ·½µÄÈÎÒâÒ»µã£¬ÇÒ¡÷PFGµÄÖܳ¤ÊÇ$2\sqrt{2}+2$£®
£¨¢ñ£©Çóa£¬bµÄÖµ£»
£¨¢ò£©ÈôMÊÇ°ëÔ²x2+y2=b2£¨y¡Ü0£©³ýA£¬BÍâÈÎÒâÒ»µã£¬C£¨-b£¬a£©£¬D£¨b£¬a£©£¬Á¬½ÓMC£¬MD·Ö±ð½»ABÓÚµãE£¬F£¬Çó|AE|2+|BF|2µÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨¢ñ£©ÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍa£¬b£¬cµÄ¹Øϵ£¬¿ÉµÃb=c£¬¼´ÓÐGΪÍÖÔ²µÄ½¹µã£¬ÓÉÍÖÔ²µÄ¶¨Ò壬¿ÉµÃa=2£¬b=1£»
£¨¢ò£©ÓÉ£¨¢ñ£©¿ÉÖª£¬C£¨-1£¬$\sqrt{2}$£©£¬D£¨1£¬$\sqrt{2}$£©£¬ÉèM£¨cos¦È£¬sin¦È£©£¬¦È¡Ê£¨¦Ð£¬2¦Ð£©£¬ÓÉÖ±ÏßAC·½³Ì¿ÉµÃE¡¢FµÄ×ø±ê£¬ÔËÓÃÁ½µãµÄ¾àÀ빫ʽ£¬½áºÏÈý½Çº¯ÊýµÄºãµÈ±ä»»ºÍÕýÏÒº¯ÊýµÄµ¥µ÷ÐÔ£¬¼´¿ÉµÃµ½È¡Öµ·¶Î§£®

½â´ð ½â£º£¨¢ñ£©ÍÖÔ²$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬¼´ÓÐe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬
ÓÉa2-b2=c2£¬¿ÉµÃb=c£¬
¹ÊGΪÍÖÔ²µÄÒ»¸ö½¹µã£¬¼´ÓÐF£¨0£¬c£©£¬G£¨0£¬-c£©£¬
ÓÉÍÖÔ²µÄ¶¨Òå¿ÉµÃ¡÷PFGµÄÖܳ¤Îª2a+2c=2$\sqrt{2}$+2£¬
½âµÃa=2£¬b=1£»
£¨¢ò£©ÓÉ£¨¢ñ£©¿ÉÖª£¬C£¨-1£¬$\sqrt{2}$£©£¬D£¨1£¬$\sqrt{2}$£©£¬
ÉèM£¨cos¦È£¬sin¦È£©£¬¦È¡Ê£¨¦Ð£¬2¦Ð£©£¬
ÔòÖ±ÏßAC£ºy-$\sqrt{2}$=$\frac{sin¦È-\sqrt{2}}{cos¦È+1}$£¨x+1£©£¬
Áîy=0£¬¿ÉµÃE£¨$\frac{-\sqrt{2}cos¦È-sin¦È}{sin¦È-\sqrt{2}}$£¬0£©£¬
ͬÀíÇóµÃF£¨$\frac{-\sqrt{2}cos¦È+sin¦È}{sin¦È-\sqrt{2}}$£¬0£©£¬
|AE|2+|BF|2=£¨$\frac{-\sqrt{2}£¨cos¦È+1£©}{sin¦È-\sqrt{2}}$£©2+£¨$\frac{\sqrt{2}£¨cos¦È-1£©}{sin¦È-\sqrt{2}}$£©2=$\frac{2£¨2co{s}^{2}¦È+2£©}{£¨sin¦È-\sqrt{2}£©^{2}}$=$\frac{4£¨2-si{n}^{2}¦È£©}{£¨sin¦È-\sqrt{2}£©^{2}}$
=4•$\frac{\sqrt{2}+sin¦È}{\sqrt{2}-sin¦È}$=-4£¨1+$\frac{2\sqrt{2}}{sin¦È-\sqrt{2}}$£©£¬
Áîu=sin¦È¡Ê[-1£¬0]£¬
|AE|2+|BF|2=-4£¨1+$\frac{2\sqrt{2}}{u-\sqrt{2}}$£©ÊÇ[-1£¬0]Éϵĵ¥µ÷Ôöº¯Êý£®
Ôò|AE|2+|BF|2=¡Ê[12-8$\sqrt{2}$£¬4£©¼´ÎªËùÇó£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²ºÍÔ²µÄ¶¨ÒåºÍ·½³ÌµÄÔËÓã¬Ö÷Òª¿¼²éÍÖÔ²µÄ¶¨ÒåºÍÔ²µÄ²ÎÊý·½³ÌµÄÔËÓ㬿¼²éÈý½Çº¯ÊýµÄºãµÈ±ä»»¹«Ê½µÄÔËÓúÍÕýÏÒº¯ÊýµÄµ¥µ÷ÐÔµÄÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø