ÌâÄ¿ÄÚÈÝ

3£®£¨1£©ÔÚ¼«×ø±êϵÖУ¬ÇúÏßC1£º¦Ñ£¨$\sqrt{2}$cos¦È+sin¦È£©=1ÓëÇúÏßC2£º¦Ñ=¦Á£¨¦Á£¾0£©µÄÒ»¸ö½»µãÔÚ¼«ÖáÉÏ£¬Çó¦ÁµÄÖµ£®
£¨2£©ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®ÒÑÖªµãAµÄ¼«×ø±êΪ£¨$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©£¬Ö±Ïߵļ«×ø±ê·½³ÌΪ¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=¦Á£¬ÇÒµãAÔÚÖ±ÏßÉÏ£¬Çó¦ÁµÄÖµ¼°Ö±ÏßµÄÖ±½Ç×ø±ê·½³Ì£®

·ÖÎö £¨1£©ÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\\{{¦Ñ}^{2}={x}^{2}+{y}^{2}}\end{array}\right.$¼´¿É»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨2£©Í¬£¨1£©¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÇúÏßC1£º¦Ñ£¨$\sqrt{2}$cos¦È+sin¦È£©=1µÄÆÕͨ·½³ÌΪ$\sqrt{2}$x+y=1£¬ÇúÏßC2£º¦Ñ=¦Á£¨¦Á£¾0£©¶ÔÓ¦µÄÆÕͨ·½³ÌΪx2+y2=a2£®ÔÚ$\sqrt{2}$x+y=1ÖУ¬Áîy=0µÃx=$\frac{\sqrt{2}}{2}$£®
½«µã$£¨\frac{\sqrt{2}}{2}£¬0£©$´úÈëx2+y2=a2µÃ$a=\frac{\sqrt{2}}{2}$£®
£¨2£©ÓɵãA£¨$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©£¬ÔÚÖ±ÏߦÑcos£¨¦È-$\frac{¦Ð}{4}$£©=¦ÁÉϿɵæÁ=$\sqrt{2}$£®
Ö±Ïß·½³Ì¿É»¯Îª$\frac{\sqrt{2}}{2}£¨¦Ñcos¦È+¦Ñsin¦È£©$=$\sqrt{2}$£®
¡àÖ±ÏßµÄÖ±½Ç×ø±ê·½³ÌΪx+y-2=0£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê»¯ÎªÖ±½Ç×ø±êµÄ·½·¨£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø