ÌâÄ¿ÄÚÈÝ
3£®£¨1£©ÔÚ¼«×ø±êϵÖУ¬ÇúÏßC1£º¦Ñ£¨$\sqrt{2}$cos¦È+sin¦È£©=1ÓëÇúÏßC2£º¦Ñ=¦Á£¨¦Á£¾0£©µÄÒ»¸ö½»µãÔÚ¼«ÖáÉÏ£¬Çó¦ÁµÄÖµ£®£¨2£©ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®ÒÑÖªµãAµÄ¼«×ø±êΪ£¨$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©£¬Ö±Ïߵļ«×ø±ê·½³ÌΪ¦Ñcos£¨¦È-$\frac{¦Ð}{4}$£©=¦Á£¬ÇÒµãAÔÚÖ±ÏßÉÏ£¬Çó¦ÁµÄÖµ¼°Ö±ÏßµÄÖ±½Ç×ø±ê·½³Ì£®
·ÖÎö £¨1£©ÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\\{{¦Ñ}^{2}={x}^{2}+{y}^{2}}\end{array}\right.$¼´¿É»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨2£©Í¬£¨1£©¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÇúÏßC1£º¦Ñ£¨$\sqrt{2}$cos¦È+sin¦È£©=1µÄÆÕͨ·½³ÌΪ$\sqrt{2}$x+y=1£¬ÇúÏßC2£º¦Ñ=¦Á£¨¦Á£¾0£©¶ÔÓ¦µÄÆÕͨ·½³ÌΪx2+y2=a2£®ÔÚ$\sqrt{2}$x+y=1ÖУ¬Áîy=0µÃx=$\frac{\sqrt{2}}{2}$£®
½«µã$£¨\frac{\sqrt{2}}{2}£¬0£©$´úÈëx2+y2=a2µÃ$a=\frac{\sqrt{2}}{2}$£®
£¨2£©ÓɵãA£¨$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©£¬ÔÚÖ±ÏߦÑcos£¨¦È-$\frac{¦Ð}{4}$£©=¦ÁÉϿɵæÁ=$\sqrt{2}$£®
Ö±Ïß·½³Ì¿É»¯Îª$\frac{\sqrt{2}}{2}£¨¦Ñcos¦È+¦Ñsin¦È£©$=$\sqrt{2}$£®
¡àÖ±ÏßµÄÖ±½Ç×ø±ê·½³ÌΪx+y-2=0£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê»¯ÎªÖ±½Ç×ø±êµÄ·½·¨£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
13£®Éè±äÁ¿x£¬yÂú×ã$\left\{\begin{array}{l}{x-y¡Ý-1}\\{x+y¡Ý1}\\{3x-y¡Ü3}\end{array}\right.$£¬Ôòw=4x+yµÄ×î´óֵΪ£¨¡¡¡¡£©
A£® | 4 | B£® | 11 | C£® | 12 | D£® | 14 |
11£®ÈçͼËùʾ£¬±íʾÒõÓ°²¿·ÖµÄ¶þÔªÒ»´Î²»µÈʽ×éÊÇ£¨¡¡¡¡£©
A£® | $\left\{\begin{array}{l}x-y-2£¼0\\ x+2y-4£¾0\\ x¡Ý0\end{array}\right.$ | B£® | $\left\{\begin{array}{l}x-y-2£¼0\\ x+2y-4£¼0\\ x¡Ý0\end{array}\right.$ | ||
C£® | $\left\{\begin{array}{l}x-y-2£¾0\\ x+2y-4£¼0\\ x¡Ý0\end{array}\right.$ | D£® | $\left\{\begin{array}{l}x-y-2£¾0\\ x+2y-4£¾0\\ x¡Ý0\end{array}\right.$ |