题目内容
8.A,B,C,D是空间不共面的四个已知点,它们到平面α的距离都相等,则满足条件的平面α有7个.分析 根据题意画出构成的几何体,根据平面两侧的点的个数进行分类,利用三棱锥的结构特征进行求解.
解答 解:空间中不共面的四个定点构成三棱锥,如图:三棱锥D-ABC,
①当平面一侧有一点,另一侧有三点时,即对此三棱锥进行换底,则三棱锥有四种表示形式,此时满足条件的平面个数是四个,
②当平面一侧有两点,另一侧有两点时,即构成的直线是三棱锥的相对棱,因三棱锥的相对棱有三对,则此时满足条件的平面个数是三个,
所以满足条件的平面共有7个,
故答案为:7.
点评 本题考查了三棱锥的结构特征的应用,根据题意画出对应的几何体,再由题意和结构特征进行求解,考查了空间想象能力.
练习册系列答案
相关题目
18.两位到北京旅游的外国游客要与2008奥运会的吉祥物福娃(5个)合影留念,要求排成一排,两位游客相邻且不排在两端,则不同的排法共有( )
A. | 1440 | B. | 960 | C. | 720 | D. | 480 |