题目内容

12.已知直线l:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ2(1+sin2θ)=2.
(Ⅰ)判断直线l与曲线C的位置关系;
(Ⅱ)已知点P(1,0),当α=$\frac{π}{4}$时,直线l与曲线C交于A,B两点,当α=$\frac{3π}{4}$时,直线l与曲线C交于E,F两点,求|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|+|$\overrightarrow{PE}$|•|$\overrightarrow{PF}$|的值.

分析 (I)直线l:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),化为普通方程:y=(x-1)tanα.曲线C的极坐标方程是ρ2(1+sin2θ)=2,利用$\left\{\begin{array}{l}{{ρ}^{2}={x}^{2}+{y}^{2}}\\{y=ρsinθ}\end{array}\right.$即可化为直角坐标方程.
即可判断出位置关系.
(II)当α=$\frac{π}{4}$时,直线l的方程为y=x-1,联立$\left\{\begin{array}{l}{y=x-1}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$,解得交点坐标,可得|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|.同理可得|$\overrightarrow{PE}$|•|$\overrightarrow{PF}$|.

解答 解:(I)直线l:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),化为普通方程:y=(x-1)tanα.
曲线C的极坐标方程是ρ2(1+sin2θ)=2,化为x2+y2+y2=2,即$\frac{{x}^{2}}{2}+{y}^{2}$=1.
由于直线l经过定点(1,0),在椭圆C的内部,因此直线l与曲线C的相交.
(II)当α=$\frac{π}{4}$时,直线l的方程为y=x-1,联立$\left\{\begin{array}{l}{y=x-1}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=-1}\end{array}\right.$,$\left\{\begin{array}{l}{x=\frac{4}{3}}\\{y=\frac{1}{3}}\end{array}\right.$.
∴|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|=$\sqrt{{1}^{2}+{1}^{2}}$×$\sqrt{(\frac{4}{3}-1)^{2}+(\frac{1}{3})^{2}}$=$\frac{2}{3}$.
当α=$\frac{3π}{4}$时,直线l的方程为y=-x+1,联立$\left\{\begin{array}{l}{y=-x+1}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$,$\left\{\begin{array}{l}{x=\frac{4}{3}}\\{y=-\frac{1}{3}}\end{array}\right.$.
同理可得|$\overrightarrow{PE}$|•|$\overrightarrow{PF}$|=$\frac{2}{3}$.
∴|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|+|$\overrightarrow{PE}$|•|$\overrightarrow{PF}$|=$\frac{4}{3}$.

点评 本题考查了直线的参数极坐标方程化为直角坐标方程的方法、直线与曲线相交弦长问题,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网