ÌâÄ¿ÄÚÈÝ
17£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=t+\sqrt{3}m}\\{y=-\sqrt{3}t-2m}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÈôÒÔ×ø±êÔµãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ£¨1-cos2¦È£©=8cos¦È£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßCÏàÇУ¬ÇóÖ±ÏßlÓë×ø±êÖáΧ³ÉµÄÈý½ÇÐεÄÃæ»ý£®
·ÖÎö £¨1£©ÀûÓù«Ê½Óë$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$¼´¿ÉµÃ³ö£»
£¨2£©ÓÉÖ±ÏßlµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊý»¯Îª£ºy=$-\sqrt{3}x$+m£¬´úÈëÅ×ÎïÏß·½³Ì¿ÉµÃ£º3x2-$£¨2\sqrt{3}m+4£©$x+m2=0£¬ÓÉÓÚÖ±ÏßlÓëÇúÏßCÏàÇУ¬¿ÉµÃ¡÷=0£¬½â³öm¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÓÉÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ£¨1-cos2¦È£©=8cos¦È£¬»¯Îª¦Ñ2•2sin2¦È=8¦Ñcos¦È£¬¡ày2=4x£®
£¨2£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=t+\sqrt{3}m}\\{y=-\sqrt{3}t-2m}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊý»¯Îª£ºy=$-\sqrt{3}x$+m£¬
´úÈëÅ×ÎïÏß·½³Ì¿ÉµÃ£º3x2-$£¨2\sqrt{3}m+4£©$x+m2=0£¬
¡ßÖ±ÏßlÓëÇúÏßCÏàÇУ¬
¡à¡÷=$£¨2\sqrt{3}m+4£©^{2}$-12m2=0£¬
»¯Îª$m=-\frac{\sqrt{3}}{3}$£®
¡àÖ±ÏßlµÄ·½³ÌΪ£º$y=-\sqrt{3}x$-$\frac{\sqrt{3}}{3}$£¬
¿ÉµÃÓë×ø±êÖáµÄ½»µã$£¨0£¬-\frac{\sqrt{3}}{3}£©$»ò$£¨-\frac{1}{3}£¬0£©$£®
¡àÖ±ÏßlÓë×ø±êÖáΧ³ÉµÄÈý½ÇÐεÄÃæ»ýS=$\frac{1}{2}¡Á\frac{\sqrt{3}}{3}¡Á\frac{1}{3}$=$\frac{\sqrt{3}}{18}$£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ö±ÏßÓëÅ×ÎïÏßÏàÇÐÎÊÌâת»¯ÎªÒ»Ôª¶þ´ÎµÄÅбðʽÂú×ãµÄÌõ¼þ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | f£¨x0£©=0 | B£® | f£¨x0£©£¾0 | C£® | f£¨x0£©£¼0 | D£® | f£¨x0£©µÄ·ûºÅ²»È·¶¨ |
A£® | $\frac{{4\sqrt{2}}}{3}$ | B£® | $\frac{{4\sqrt{3}}}{3}$ | C£® | $\frac{{8\sqrt{2}}}{3}$ | D£® | $4\sqrt{2}$ |
A£® | µÚÒ»ÏóÏÞ | B£® | µÚËÄÏóÏÞ | C£® | µÚÒ»¡¢ËÄÏóÏÞ | D£® | µÚ¶þ¡¢ÈýÏóÏÞ |
A£® | 4 | B£® | 3 | C£® | 2 | D£® | 1 |