ÌâÄ¿ÄÚÈÝ
7£®ÒÑÖªº¯Êýf£¨x£©=ax2+2bx£¬g£¨x£©=b+lnx£¨a¡Ê[-1£¬2]£¬b¡ÊR£¬b¡Ù0£©£®£¨¢ñ£©ÇóÃüÌâA£º¡°?x¡ÊR£¬¶ÔÓÚ?m¡ÊR+£¬f£¨x£©=m¡±ÎªÕæÃüÌâµÄ¸ÅÂÊ£»
£¨¢ò£©Èôa¡ÊZ£¬b¡Ê{-2£¬-1£¬1£¬2}£¬Ð´³öËùÓеÄÊý¶Ô£¨a£¬b£©£®É躯Êý¦Õ£¨x£©=$\left\{\begin{array}{l}f£¨x£©£¬x¡Ü1\\ g£¨x£©£¬x£¾1\end{array}$¼Ç¡°?x1£¬x2¡Ê£¨-¡Þ£¬+¡Þ£©£¬x1¡Ùx2£¬$\frac{{¦Õ£¨{x_1}£©-¦Õ£¨{x_2}£©}}{{{x_1}-{x_2}}}$£¾0¡±ÎªÊ¼þB£¬ÇóʼþB·¢ÉúµÄ¸ÅÂÊP£¨B£©£®
·ÖÎö £¨¢ñ£©µ±a£¼0ʱ£¬ÃüÌâAΪ¼ÙÃüÌ⣬ÈôÃüÌâAΪÕæÃüÌ⣬±ØÓÐa¡Ý0£¬ÀûÓü¸ºÎ¸ÅÐÍÇóµÃ¸ÅÂÊ£®
£¨¢ò£©ÏȵóöËùÓпÉÄܵÄÊý¶Ô£¬ÔÙ¸ù¾Ýº¯ÊýµÃµ¥µ÷ÐԵõ½ËùÒÔҪʹʼþB·¢Éú£¬Ö»Ðèf£¨1£©¡Üg£¨1£©¼Ì¶øµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨¢ñ£©µ±a£¼0ʱ£¬ÃüÌâAΪ¼ÙÃüÌ⣬ÈôÃüÌâAΪÕæÃüÌ⣬±ØÓÐa¡Ý0£¬
¡ß-1£¼a£¼3£¬Óɼ¸ºÎ¸ÅÐÍ֪ʶ¿ÉµÃÃüÌâAΪÕæÃüÌâµÄ¸ÅÂÊΪP£¨A£©=$\frac{2}{3}$
£¨¢ò£©ËùÓпÉÄܵÄÊý¶Ô£¨a£¬b£©Îª£¨-1£¬-2£©£¨-1£¬-1£©£¬£¨-1£¬1£©£¬£¨-1£¬2£©£¬£¨0£¬-2£©£¨0£¬-1£©£¬
£¨0£¬1£©£¬£¨0£¬2£©£¬£¨1£¬-2£©£¬£¨1£¬-1£©£¬£¨1£¬1£©£¬£¨1£¬2£©£¬£¨2£¬-2£©£¬£¨2£¬-1£©£¬£¨2£¬1£©£¬£¨2£¬2£©£¬¹²ÓÐ16¸ö£®
ÒòΪx£¾1ʱ£¬¦Õ£¨x£©=g£¨x£©=b+lnxÔÚÇø¼ä£¨1£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬
ËùÒÔ?x1£¬x2¡Ê[1£¬+¡Þ£©£¬x1¡Ùx2£¬$\frac{¦Õ£¨{x}_{1}£©-¦Õ£¨{x}_{2}£©}{{x}_{1}-{x}_{2}}£¾0$³ÉÁ¢£¬ËùÒÔҪʹʼþB·¢Éú£¬Ö»Ðèf£¨1£©¡Üg£¨1£©
¼´a+b¡Ü0£¬Âú×ãÌõ¼þµÄÊý¶Ô£¨a£¬b£©Îª£¨-1£¬-2£©£¨-1£¬-1£©£¬£¨-1£¬1£©£¬£©£¬£¨0£¬-2£©£¨0£¬-1£©£¬£¨1£¬-2£©£¬£¨1£¬-1£©£¬£¨2£¬-2£©£¬¹²8¸ö£®
ËùÒÔÓɹŵä¸ÅÐÍ֪ʶ¿ÉµÃP£¨B£©=$\frac{8}{16}=\frac{1}{2}$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¹Åµä¸ÅÐͺͼ¸ºÎ¸ÅÐÍ£¬Êô¼òµ¥ÌâÐÍ£¬¸ß¿¼Ê±Óп¼²é£®
A£® | $\frac{3}{2}[{1-{{£¨{\frac{1}{3}}£©}^5}}]$ | B£® | $\frac{1}{3}[{1-{{£¨{\frac{1}{3}}£©}^5}}]$ | C£® | $\frac{2}{3}[{1-{{£¨{\frac{1}{2}}£©}^5}}]$ | D£® | $\frac{3}{2}[{1-{{£¨{\frac{1}{2}}£©}^5}}]$ |