题目内容
2.已知矩阵M=$[\begin{array}{l}{2}&{1}\\{1}&{2}\end{array}]$,β=$[\begin{array}{l}{3}\\{5}\end{array}]$,计算M2β.分析 通过M=$[\begin{array}{l}{2}&{1}\\{1}&{2}\end{array}]$可得M2=$[\begin{array}{l}{5}&{4}\\{4}&{5}\end{array}]$,进而可得M2β=$[\begin{array}{l}{35}\\{37}\end{array}]$.
解答 解:∵M=$[\begin{array}{l}{2}&{1}\\{1}&{2}\end{array}]$,∴M2=$[\begin{array}{l}{2}&{1}\\{1}&{2}\end{array}]$$[\begin{array}{l}{2}&{1}\\{1}&{2}\end{array}]$=$[\begin{array}{l}{5}&{4}\\{4}&{5}\end{array}]$,
又∵β=$[\begin{array}{l}{3}\\{5}\end{array}]$,∴M2β=$[\begin{array}{l}{5}&{4}\\{4}&{5}\end{array}]$$[\begin{array}{l}{3}\\{5}\end{array}]$=$[\begin{array}{l}{35}\\{37}\end{array}]$.
点评 本题考查矩阵的计算,注意解题方法的积累,属于基础题.
练习册系列答案
相关题目