题目内容
【题目】已知函数.将的图象向左平移个单位长度后所得的函数为偶函数,则关于函数,下列命题正确的是( )
A. 函数在区间上有最小值 B. 函数在区间上单调递增
C. 函数的一条对称轴为 D. 函数的一个对称点为
【答案】B
【解析】
分析:求出函数平移后的解析式,由偶函数的性质求出参数,判断最值、单调区间、对称轴、对称中心时需将结论代入原函数,根据的图像与性质判断正确与否.
详解:由题意知平移后的解析式为:,因为此函数为偶函数,
所以y轴为其对称轴之一,所以将代入可得,
解得:,由的取值范围可得,
所以原解析式为,
A选项,将区间代入函数,可得,根据图像可知无最值,
B选项,将区间代入函数,可得,根据图像知函数单调递增,
C选项,将代入函数,可得,所以应为对称中心的横坐标,
D选项,将代入函数,可得,所以应为对称轴与x轴交点.
故选B.
【题目】针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:
支持 | 保留 | 不支持 | |
岁以下 | |||
岁以上(含岁) |
(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从持“不支持”态度的人中抽取了人,求的值;
(2)在持“不支持”态度的人中,用分层抽样的方法抽取人看成一个总体,从这人中任意选取人,求岁以下人数的分布列和期望;
(3)在接受调查的人中,有人给这项活动打出的分数如下: , , , , , , , , , ,把这个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过概率.
【题目】甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:
(1)填写下表:
平均数 | 方差 | 中位数 | 命中9环及以上 | |
甲 | 7 | 1.2 | 1 | |
乙 | 5.4 | 3 |
(2)请从四个不同的角度对这次测试进行①结合平均数和方差分析离散程度;②结合平均数和中位数分析谁的成绩好些;③结合平均数和命中9环及以上的次数看谁的成绩好些;④从折线图上看两人射靶命中环数及走势分析谁更有潜力.