题目内容
【题目】针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:
支持 | 保留 | 不支持 | |
岁以下 | |||
岁以上(含岁) |
(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从持“不支持”态度的人中抽取了人,求的值;
(2)在持“不支持”态度的人中,用分层抽样的方法抽取人看成一个总体,从这人中任意选取人,求岁以下人数的分布列和期望;
(3)在接受调查的人中,有人给这项活动打出的分数如下: , , , , , , , , , ,把这个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过概率.
【答案】(1);(2)分布列见解析, ;(3).
【解析】试题分析:
(1)由题意可知参与调查的总人数为,结合分层抽样的概念计算可得.
(2)由题意可知抽取的人中, 岁以下与岁以上人数分别为人, 人,则,计算相应的概率值有, , , ,据此可得分布列,计算相应的期望为.
(3)总体的平均数为,则与总体平均数之差的绝对值超过的数有, , ,由古典概型计算公式可得满足题意的概率值为.
试题解析:
(1)参与调查的总人数为,其中从持“不支持”态度的人数中抽取了人,所以.
(2)在持“不支持”态度的人中, 岁以下及岁以上人数之比为,因此抽取的人中, 岁以下与岁以上人数分别为人, 人, ,
, ,
, ,
.
(3)总体的平均数为 ,
那么与总体平均数之差的绝对值超过的数有, , ,所以任取个数与总体平均数之差的绝对值超过的概率为.
【题目】某市交通管理有关部门对年参加驾照考试的岁以下的学员随机抽取名学员,对他们的科目三(道路驾驶)和科目四(安全文明相关知识)进行两轮测试,并把两轮成绩的平均分作为该学员的抽测成绩,记录数据如下:
学员编号 | ||||||||||
科目三成绩 | ||||||||||
科目四成绩 |
(1)从年参加驾照考试的岁以下学员中随机抽取一名学员,估计这名学员抽测成绩大于或等于分的概率;
(2)根据规定,科目三和科目四测试成绩均达到分以上(含分)才算合格,从抽测的到号学员中任意抽取两名学员,记为抽取学员不合格的人数,求的分布列和数学期望.
【题目】某小组为了研究昼夜温差对一种稻谷种子发芽情况的影响,他们分别记录了4月1日至4月5日的每天星夜温差与实验室每天每100颗种子的发芽数,得到如下资料:
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
温差 | 9 | 10 | 11 | 8 | 12 |
发芽数(颗) | 38 | 30 | 24 | 41 | 17 |
利用散点图,可知线性相关。
(1)求出关于的线性回归方程,若4月6日星夜温差,请根据你求得的线性同归方程预测4月6日这一天实验室每100颗种子中发芽颗数;
(2)若从4月1日 4月5日的五组实验数据中选取2组数据,求这两组恰好是不相邻两天数据的概率.
(公式:)