题目内容
4.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算K2≈0.99,根据这一数据分析,下列说法正确的是( )A. | 有99%的人认为该栏目优秀 | |
B. | 有99%的人认为该栏目是否优秀与改革有关系 | |
C. | 有99%的把握认为电视栏目是否优秀与改革有关系 | |
D. | 没有理由认为电视栏目是否优秀与改革有关系 |
分析 根据k2的参考表,进行判断即可.
解答 解:
P(K2>k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
所以可以说在犯错率不超过0.4的条件下认为该栏目是否优秀与改革有关系,即有60%的把握认为电视栏目是否优秀与改革有关系,
故没有理由认为电视栏目是否优秀与改革有关系,
故选D.
点评 本题的考查点是独立性检验的应用,根据独立性检测考查两个变量是否有关系的方法进行判断,准确的理解判断方法及K2的含义是解决本题的关键.
练习册系列答案
相关题目
20.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数是( )
A. | y=x+x-1 | B. | y=x3+x | C. | y=2x+log2x | D. | $y={x^{\frac{1}{2}}}$ |
16.已知椭圆C的中心在原点,左焦点F1,右焦点F2均在x轴上,A为椭圆的右顶点,B为椭圆短轴的端点,P是椭圆上一点,且PF1⊥x轴,PF2∥AB,则此椭圆的离心率等于( )
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{{\sqrt{5}}}{5}$ |