题目内容

19.下列命题中
①若f′(x0)=0,则函数y=f(x)在x=x0取得极值;
②直线5x-2y+1=0与函数f(x)=sin(2x+$\frac{π}{3}$)的图象不相切;
③若z∈C(C为复数集),且|z+2-2i|=1,则|z-2-2i|的最小值是3;
④定积分${∫}_{-4}^{0}$$\sqrt{16-{x}^{2}}$dx=4π.
正确的有(  )
A.①④B.③④C.②④D.②③④

分析 ①若f′(x0)=0,且在x=x0的左右附近导数的符号改变,则函数y=f(x)在x=x0取得极值判断即可;
②求出导数f′(x),由切线的斜率等于f′(x0),根据三角函数的值域加以判断即可;
③|z+2-2i|=1表示圆,|z-2-2i|的几何意义两点的距离,通过连接两定点,由原定特性即可求出最小值;
④令y=$\sqrt{16-{x}^{2}}$,则x2+y2=16(y≥0),点(x,y)的轨迹表示半圆,则该积分表示该圆面积的$\frac{1}{4}$.

解答 解:①若f′(x0)=0,且在x=x0的左右附近导数的符号改变,则函数y=f(x)在x=x0取得极值,故不正确;
②若直线与函数的图象相切,则f′(x0)=2.5,即2cos(2x0+$\frac{π}{3}$)=2.5,显然x0不存在,故②正确;
③|z+2-2i|=1的几何意义是以A(-2,2)为圆心,半径为1的圆,|z-2-2i|的几何意义是圆上一点到点B(2,2)的距离,连接AB并延长,显然最小值为AB-1=4-1=3,故③正确;
④令y=$\sqrt{16-{x}^{2}}$,则x2+y2=16(y≥0),点(x,y)的轨迹表示半圆,定积分${∫}_{-4}^{0}$$\sqrt{16-{x}^{2}}$dx表示以原点为圆心,4为半径的圆面积的$\frac{1}{4}$,故定积分${∫}_{-4}^{0}$$\sqrt{16-{x}^{2}}$dx=$\frac{1}{4}$×π×42=4π,故④正确.
故选:D

点评 本题以命题的真假为载体考查函数的极值概念,导数的应用于求切线方程,以及复数的几何意义,定积分的几何意义及求法,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网