ÌâÄ¿ÄÚÈÝ

13£®ÒÑÖªÔ²E£ºx2+£¨y-$\frac{1}{2}$£©2=$\frac{9}{4}$¾­¹ýÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×óÓÒ½¹µãF1£¬F2£¬ÇÒÓëÍÖÔ²CÔÚµÚÒ»ÏóÏ޵Ľ»µãΪA£¬ÇÒF1£¬E£¬AÈýµã¹²Ïߣ¬Ö±Ïßl½»ÍÖÔ²CÓÚM£¬NÁ½µã£¬ÇÒ$\overrightarrow{MN}$=¦Ë$\overrightarrow{OA}$£¨¦Ë¡Ù0£©
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©µ±Èý½ÇÐÎAMNµÄÃæ»ýÈ¡µÃ×î´óֵʱ£¬ÇóÖ±ÏßlµÄ·½³Ì£®

·ÖÎö £¨1£©ÓÉÌâÒâ°Ñ½¹µã×ø±ê´úÈëÔ²µÄ·½³ÌÇó³öc£¬ÔÙÓÉÌõ¼þµÃF1AΪԲEµÄÖ±¾¶Çó³ö|AF1|=3£¬¸ù¾Ý¹´¹É¶¨ÀíÇó³ö|AF2|£¬¸ù¾ÝÍÖÔ²µÄ¶¨ÒåºÍa2=b2+c2ÒÀ´ÎÇó³öaºÍbµÄÖµ£¬´úÈëÍÖÔ²·½³Ì¼´¿É£»
£¨2£©ÓÉ£¨1£©Çó³öAµÄ×ø±ê£¬¸ù¾ÝÏòÁ¿¹²ÏßµÄÌõ¼þÇó³öÖ±ÏßOAµÄбÂÊ£¬ÉèÖ±ÏßlµÄ·½³ÌºÍM¡¢NµÄ×ø±ê£¬ÁªÁ¢Ö±ÏߺÍÍÖÔ²·½³ÌÏûÈ¥y£¬ÀûÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½Çó³ö|MN|£¬Óɵ㵽ֱÏߵľàÀ빫ʽÇó³öµãAµ½Ö±ÏßlµÄ¾àÀ룬´úÈëÈý½ÇÐεÄÃæ»ý¹«Ê½Çó³ö¡÷AMNµÄÃæ»ýSµÄ±í´ïʽ£¬»¯¼òºóÀûÓûù±¾²»µÈʽÇó³öÃæ»ýµÄ×î´óÖµÒÔ¼°¶ÔÓ¦µÄm£¬´úÈëÖ±ÏßlµÄ·½³Ì¼´¿É£®

½â´ð ½â£º£¨1£©ÈçͼԲE¾­¹ýÍÖÔ²CµÄ×óÓÒ½¹µãF1£¬F2£¬
¡àc2+£¨0-$\frac{1}{2}$£©2=$\frac{9}{4}$£¬½âµÃc=$\sqrt{2}$£¬¡­£¨2·Ö£©
¡ßF1£¬E£¬AÈýµã¹²Ïߣ¬¡àF1AΪԲEµÄÖ±¾¶£¬Ôò|AF1|=3£¬
¡àAF2¡ÍF1F2£¬¡à$|A{F}_{2}{|}^{2}$=$|A{F}_{1}{|}^{2}$-$|{F}_{1}{F}_{2}{|}^{2}$=9-8=1£¬
¡ß2a=|AF1|+|AF2|=3+1=4£¬¡àa=2
ÓÉa2=b2+c2µÃ£¬b=$\sqrt{2}$£¬¡­£¨4·Ö£©
¡àÍÖÔ²CµÄ·½³ÌÊÇ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$£»¡­£¨5·Ö£©
£¨2£©ÓÉ£¨1£©µÃµãAµÄ×ø±ê£¨$\sqrt{2}$£¬1£©£¬
¡ß$\overrightarrow{MN}=¦Ë\overrightarrow{OA}$£¨¦Ë¡Ù0£©£¬¡àÖ±ÏßlµÄбÂÊΪkOA=$\frac{\sqrt{2}}{2}$£¬¡­£¨6·Ö£©
ÔòÉèÖ±ÏßlµÄ·½³ÌΪy=$\frac{\sqrt{2}}{2}$x+m£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{\sqrt{2}}{2}x+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$µÃ£¬${x}^{2}+\sqrt{2}mx+{m}^{2}-2=0$£¬
¡àx1+x2=$-\sqrt{2}m$£¬x1x2=m2-2£¬
ÇÒ¡÷=2m2-4m2+8£¾0£¬½âµÃ-2£¼m£¼2£¬¡­£¨8·Ö£©
¡à|MN|=$\sqrt{1+{k}^{2}}$|x2-x1|=$\sqrt{1+\frac{1}{2}}$$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-{4x}_{1}{x}_{2}}$
=$\sqrt{\frac{3}{2}}$$\sqrt{£¨-\sqrt{2}m£©^{2}-4£¨{m}^{2}-2£©}$=$\sqrt{{12-3m}^{2}}$£¬
¡ßµãAµ½Ö±ÏßlµÄ¾àÀëd=$\frac{|\frac{\sqrt{2}}{2}¡Á\sqrt{2}-1+m|}{\sqrt{\frac{1}{2}+1}}$=$\frac{\sqrt{6}|m|}{3}$£¬
¡à¡÷AMNµÄÃæ»ýS=$\frac{1}{2}|MN|d$=$\frac{1}{2}¡Á\sqrt{{12-3m}^{2}}¡Á\frac{\sqrt{6}|m|}{3}$
=$\frac{\sqrt{2}}{2}$$\sqrt{{£¨4-m}^{2}£©{m}^{2}}$¡Ü$\frac{\sqrt{2}}{2}¡Á\frac{4-{m}^{2}+{m}^{2}}{2}$=$\sqrt{2}$£¬¡­£¨10·Ö£©
µ±ÇÒ½öµ±4-m2=m2£¬¼´m=$¡À\sqrt{2}$£¬Ö±ÏßlµÄ·½³ÌΪ$y=\frac{\sqrt{2}}{2}x¡À\sqrt{2}$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬Î¤´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÏòÁ¿¹²ÏßÌõ¼þ£¬ÒÔ¼°Ö±Ïß¡¢Ô²ÓëÍÖÔ²µÄλÖùØϵµÈ£¬¿¼²éµÄ֪ʶ¶à£¬×ÛºÏÐÔÇ¿£¬¿¼²é»¯¼ò¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø