题目内容
9.函数f(x)=$\frac{x}{{\sqrt{3-x}}}$的定义域是(-∞,3).分析 根据函数成立的条件即可求函数的定义域.
解答 解:要使函数有意义,则3-x>0,
即x<3,
故函数的定义域为(-∞,3),
故答案为:(-∞,3)
点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.
练习册系列答案
相关题目
19.若复数$\frac{a+i}{2i}$的实部和虚部相等,则实数a=( )
A. | -1 | B. | 1 | C. | -2 | D. | 2 |
20.若等轴双曲线经过点(2,1),则该双曲线的实轴长是( )
A. | 2$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | 2$\sqrt{2}$ | D. | $\sqrt{2}$ |
17.某环保部门对甲、乙两类A型品牌车各抽取5辆进行CO2排放量检测,记录如下(单位:g/km).
经测算发现,乙品牌车CO2排放量的平均值为$\overline{{x}_{乙}}$=120g/km.
(Ⅰ)从被检测的5辆甲类品牌车中任取2辆,则至少有一辆CO2排放量超过130(g/km)的概率是多少?
(Ⅱ)若90<x<130,试比较甲、乙两类品牌车CO2排放量的稳定性.
甲 | 80 | 110 | 120 | 140 | 150 |
乙 | 100 | 120 | x | y | 160 |
(Ⅰ)从被检测的5辆甲类品牌车中任取2辆,则至少有一辆CO2排放量超过130(g/km)的概率是多少?
(Ⅱ)若90<x<130,试比较甲、乙两类品牌车CO2排放量的稳定性.
4.连续抛掷两次骰子得到的点数分别为m和n,记向量$\overrightarrow{a}$=(m,n),向量$\overrightarrow{b}$=(1,-2),则$\overrightarrow{a}$⊥$\overrightarrow{b}$的概率是( )
A. | $\frac{1}{12}$ | B. | $\frac{1}{6}$ | C. | $\frac{7}{36}$ | D. | $\frac{2}{9}$ |
18.已知等差数列{an}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=( )
A. | 123 | B. | 105 | C. | 95 | D. | 23 |