题目内容
19.若复数$\frac{a+i}{2i}$的实部和虚部相等,则实数a=( )A. | -1 | B. | 1 | C. | -2 | D. | 2 |
分析 利用复数的运算法则、实部和虚部的定义即可得出.
解答 解:∵复数$\frac{a+i}{2i}$=$\frac{-i(a+i)}{-2i•i}$=$\frac{1-ai}{2}$的实部和虚部相等,
∴$\frac{1}{2}=-\frac{a}{2}$,解得a=-1.
则实数a=-1.
故选:A.
点评 本题考查了复数的运算法则、实部和虚部的定义,考查了计算能力,属于基础题.
练习册系列答案
相关题目
10.对任意正数x,y,不等式$\frac{x}{3x+y}+\frac{3y}{x+3y}≤k$恒成立,则实数k的取值范围是( )
A. | $[{\frac{5}{4},+∞})$ | B. | $[{\frac{{6-\sqrt{3}}}{4},+∞})$ | C. | [1,+∞) | D. | $[{\frac{{\sqrt{3}}}{2},+∞})$ |
7.P是双曲线$\frac{x^2}{4}$-y2=1右支(在第一象限内)上的任意一点,A1,A2分别是左右顶点,O是坐标原点,直线PA1,PO,PA2的斜率分别为k1,k2,k3,则斜率之积k1k2k3的取值范围是( )
A. | (0,1) | B. | (0,$\frac{1}{8}$) | C. | (0,$\frac{1}{4}$) | D. | (0,$\frac{1}{2}$) |
14.某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变.有关数据如下表所示:
(1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平.问风景区是怎样计算的?
(2)另一方面,游客认为调整收费后风景区的平均日总收入相对调整前,实际上增加了约9.4%.问游客是怎样计算的?
(3)你认为风景区和游客哪一个的说法较能反映整体情况?
景点 | A | B | C | D | E |
原价(元) | 10 | 10 | 15 | 20 | 25 |
现价(元) | 5 | 5 | 15 | 25 | 30 |
平均日人数(千人) | 1 | 1 | 2 | 3 | 2 |
(2)另一方面,游客认为调整收费后风景区的平均日总收入相对调整前,实际上增加了约9.4%.问游客是怎样计算的?
(3)你认为风景区和游客哪一个的说法较能反映整体情况?
4.对于函数f(x)=eax-lnx,(a是实常数),下列结论正确的一个是( )
A. | a=1时,B有极大值,且极大值点(1,3) | |
B. | a=2时,A有极小值,且极小值点x0∈(0,$\frac{1}{4}$) | |
C. | a=$\frac{1}{2}$时,D有极小值,且极小值点x0∈(1,2) | |
D. | a<0时,C有极大值,且极大值点x0∈(-∞,0) |