ÌâÄ¿ÄÚÈÝ
19£®ÎÒÃÇ°ÑÀëÐÄÂÊe=$\frac{{\sqrt{5}+1}}{2}$µÄË«ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨{a£¾0£¬b£¾0}£©$³ÆΪ»Æ½ðË«ÇúÏߣ®¸ø³öÒÔϼ¸¸ö˵·¨£º£¨1£©Ë«ÇúÏßx2-$\frac{{2{y^2}}}{{\sqrt{5}+1}}$=1ÊǻƽðË«ÇúÏߣ»
£¨2£©Èôb2=ac£¬Ôò¸ÃË«ÇúÏßÊǻƽðË«ÇúÏߣ»
£¨3£©ÈôMN¾¹ýÓÒ½¹µãF2ÇÒMN¡ÍF1F2£¬¡ÏMON=90¡ã£¬Ôò¸ÃË«ÇúÏßÊǻƽðË«ÇúÏߣ»
£¨4£©ÈôF1£¬F2Ϊ×óÓÒ½¹µã£¬A1£¬A2Ϊ×óÓÒ¶¥µã£¬B1£¨0£¬b£©£¬B2£¨0£¬-b£©ÇÒ¡ÏF1B1A2=90¡ã£¬Ôò¸ÃË«ÇúÏßÊǻƽðË«ÇúÏߣ® ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ£¨1£©£¨2£©£¨3£©£¨4£©£®
·ÖÎö £¨1£©ÀûÓÃË«ÇúÏߵļòµ¥ÐÔÖÊ·Ö±ðÇó³öÀëÐÄÂÊ£¬ÔÙÀûÓûƽðË«ÇúÏߵĶ¨ÒåÇó½â£®
£¨2£©Çó³öË«ÇúÏߵĶ¨ÒåÇó³öÀëÐÄÂÊ£¬¸ù¾Ý»Æ½ðË«ÇúÏߵĶ¨ÒåÇó½â£®
£¨3£©¸ù¾ÝÌõ¼þÇó³öË«ÇúÏߵĶ¨ÒåÇó³ö£¨2£©µÄ½áÂÛ£®
£¨4£©¸ù¾ÝÌõ¼þÇó³öÀëÐÄÂÊÇó³ö£¨2£©µÄ½áÂÛ£®
½â´ð ½â£º£¨1£©Ë«ÇúÏßx2-$\frac{2{y}^{2}}{\sqrt{5}+1}$=1ÖУ¬$e=\frac{\sqrt{1+\frac{\sqrt{5}+1}{2}}}{1}=\frac{\sqrt{5}+1}{2}$
¡àË«ÇúÏßx2-$\frac{2{y}^{2}}{\sqrt{5}+1}$=1ÊǻƽðË«ÇúÏߣ¬¹Ê£¨1£©ÕýÈ·£»
¶ÔÓÚ£¨2£©¡ße¶ÔÓÚ£¨2£©b2=ac£¬Ôòe=$e=\frac{c}{a}=\frac{\sqrt{{a}^{2}+ac}}{a}=\sqrt{1+e}$¡àe2-e-1=0
½âµÃ$e=\frac{\sqrt{5}+1}{2}$»òe=$\frac{1-\sqrt{5}}{2}$£¨Éᣩ¡à¸ÃË«ÇúÏßÊǻƽðË«ÇúÏߣ¬¹Ê£¨2£©ÕýÈ·£»
¶ÔÓÚ£¨3£©Èçͼ£¬MN¾¹ýÓÒ½¹µãF2ÇÒMN¡ÍF1F2£¬¡ÏMON=90¡ã£¬
¡àNF2=OF2£¬¡à$\frac{{b}^{2}}{a}$=c£¬¡àb2=ac£¬
ÓÉ£¨2£©Öª¸ÃË«ÇúÏßÊǻƽðË«ÇúÏߣ¬¹Ê£¨3£©ÕýÈ·£®
¶ÔÓÚ£¨4£©Èçͼ£¬F1£¬F2Ϊ×óÓÒ½¹µã£¬A1£¬A2Ϊ×óÓÒ¶¥µã£¬
B1£¨0£¬b£©£¬B2£¨0£¬-b£©£¬ÇÒ¡ÏF1B1A2=90¡ã£¬
¡àB1F12+B1A22=A2F12£¬¼´b2+2c2=£¨a+c£©2£¬
ÕûÀí£¬µÃb2=ac£¬ÓÉ£¨2£©Öª¸ÃË«ÇúÏßÊǻƽðË«ÇúÏߣ¬¹Ê£¨4£©ÕýÈ·£»
¹Ê´ð°¸Îª£º£¨1£©£¨2£©£¨3£©£¨4£©£®
µãÆÀ ±¾Ì⿼²é»Æ½ðË«ÇúÏßµÄÅжϣ¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâË«ÇúÏßµÄÐÔÖʵÄÁé»îÔËÓã®
X | x1 | x2 | x3 |
P | p1 | p2 | p3 |
A£® | $\frac{1}{2}$ | B£® | $\frac{\sqrt{3}}{2}$ | C£® | -$\frac{1}{2}$ | D£® | -$\frac{\sqrt{3}}{2}$ |
A£® | £¨0£¬2£© | B£® | £¨0£¬2] | C£® | £¨2£¬+¡Þ£© | D£® | [2£¬+¡Þ£© |