题目内容
【题目】已知二阶矩阵M有特征值λ=8及对应的一个特征向量 =[ ],并且矩阵M对应的变换将点(﹣1,2)变换成(﹣2,4).
(1)求矩阵M;
(2)求矩阵M的另一个特征值.
【答案】
(1)解:设矩阵A= ,这里a,b,c,d∈R,
则 =8 = ,
故 ,
由于矩阵M对应的变换将点(﹣1,2)换成(﹣2,4).
则 = ,
故
联立以上两方程组解得a=6,b=2,c=4,d=4,故M=
(2)解:由(1)知,矩阵M的特征多项式为f(λ)=(λ﹣6)(λ﹣4)﹣8=λ2﹣10λ+16,
故矩阵M的另一个特征值为2
【解析】(1)先设矩阵A= ,这里a,b,c,d∈R,由二阶矩阵M有特征值λ=8及对应的一个特征向量e1及矩阵M对应的变换将点(﹣1,2)换成(﹣2,4).得到关于a,b,c,d的方程组,即可求得矩阵M;(2)由(1)知,矩阵M的特征多项式为f(λ)=(λ﹣6)(λ﹣4)﹣8=λ2﹣10λ+16,从而求得另一个特征值为2.
【题目】近年来,某市实验中学校领导审时度势,深化教育教学改革,经过师生共同努力,高考成绩硕果累累,捷报频传,尤其是2017年某著名高校在全国范围内录取的大学生中就有25名来自该中学.下表为该中学近5年被录取到该著名高校的学生人数.(记2013年的年份序号为1,2014年的年份序号为2,依此类推……)
年份序号 | 1 | 2 | 3 | 4 | 5 |
录取人数 | 10 | 13 | 17 | 20 | 25 |
(1)求关于的线性回归方程,并估计2018年该中学被该著名高校录取的学生人数(精确到整数);
(2)若在第1年和第4年录取的大学生中按分层抽样法抽取6人,再从这6人中任选2人,求这2人中恰好有一位来自第1年的概率.
参考数据:,.
参考公式:,.
【题目】某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量(百斤)与使用某种液体肥料(千克)之间对应数据为如图所示的折线图.
(1)依据数据的折线图,是否可用线性回归模型拟合与的关系?请计算相关系数并加以说明(精确到0.01).(若,则线性相关程度很高,可用线性回归模型拟合)
(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量限制,并有如下关系:
周光照量(单位:小时) | |||
光照控制仪最多可运行台数 | 3 | 2 | 1 |
若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.
附:相关系数公式,参考数据,.