题目内容

11.已知函数f(x)的导数f′(x)=a[x2+(1-a)x-a](a≠0),若函数f(x)在x=a处取到极大值,则实数a的取值范围是(-1,0).

分析 先对f′(x)进行因式分解,再讨论a的正负,以及a与-1的大小,分别判定在x=a处的导数符号,确定是否在x=a处取到极大值,即可求出实数a的取值范围.

解答 解:由题意得,f′(x)=a[x2+(1-a)x-a]=a(x+1)(x-a),
∵f(x)在x=a处取到极大值,
∴必有x<a时,f′(x)>0,且x>a时,f′(x)<0,
(1)当a>0时,
当-1<x<a时,f′(x)<0,当x>a时,f′(x)>0,
则f(x)在x=a处取到极小值,不符合题意;
(2)当a=0时,函数f(x)无极值,不符合题意;
(3)当-1<a<0时,
当-1<x<a时,f′(x)>0,当x>a时,f′(x)<0,
则f(x)在x=a处取到极大值,符合题意;
(4)当a=-1时,f′(x)≤0,函数f(x)无极值,不符合题意;
(5)当a<-1时,
当x<a时,f′(x)<0,当a<x<-1时,f′(x)>0,
则f(x)在x=a处取到极小值,不符合题意;
综上所述-1<a<0,
故答案为:(-1,0).

点评 本题考查了函数在某点取得极值的条件,以及导数与函数的单调性、极值的关系,考查了分类讨论思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网