题目内容

【题目】已知f(x)=4sinωxsin(ωx+ )﹣1(ω>0),f(x)的最小正周期为π.
(Ⅰ)当x∈[0, ]时,求f(x)的最大值;
(Ⅱ)请用“五点作图法”画出f(x)在[0,π]上的图象.

【答案】解:(Ⅰ)由f(x)=4sinωxsin(ωx+ )﹣1=2sin2ωx﹣1+2 sinωxcosωx=2sin(2ωx﹣

由f(x)的最小正周期为π,得ω=1,所以f(x)=2sin(2x﹣ ).

因为x∈[0, ],所以2x﹣ ∈[﹣ ],

故当2x﹣ = ,即x= 时,f(x)取得最大值2.

(Ⅱ)由f(x)=2sin(2ωx﹣ )知:

2x﹣

0

π

x

0

π

f(x)

﹣1

0

2

0

﹣2

﹣1


【解析】(Ⅰ)根据两角和差正弦公式可得f(x)=2sin(2ωx﹣ ),由周期公式可得ω=1即得f(x)的解析式。再根据已知可得2x﹣ ∈[﹣ ],由整体思想可得,当x= 时,f(x)取得最大值2。
(Ⅱ) 由 f(x)=2sin(2ωx﹣ )取几个特殊点可得函数图像。
【考点精析】根据题目的已知条件,利用五点法作函数y=Asin(ωx+φ)的图象的相关知识可以得到问题的答案,需要掌握描点法及其特例—五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网