题目内容

已知数列{an}的前n项和为Sn,且对任意n∈N*有an+Sn=n.
(1)设bn=an-1,求证:数列{bn}是等比数列;
(2)设c1=a1且cn=an-an-1 (n≥2),求{cn}的通项公式.
(1)证明见解析(2)cn= ()n
(1)证明 由a1+S1=1及a1=S1得a1=.
又由an+Sn=n及an+1+Sn+1=n+1得
an+1-an+an+1=1,∴2an+1=an+1.
∴2(an+1-1)=an-1,即2bn+1=bn.
∴数列{bn}是以b1=a1-1=-为首项,
为公比的等比数列.                                            6分
(2)解 方法一 由(1)知2an+1=an+1.
∴2an=an-1+1 (n≥2),                                               8分
∴2an+1-2an=an-an-1,
∴2cn+1=cn (n≥2).
又c1=a1=,a2+a1+a2=2,∴a2=.
∴c2=-=,即c2=c1.
∴数列{cn}是首项为,公比为的等比数列.                        12分
∴cn=·()n-1=()n.                                       14分
方法二 由(1)bn=(-)·()n-1=-()n.
∴an=-()n+1.
∴cn=-()+1-
=-=
=(n≥2).                                      12分
又c1=a1=也适合上式,∴cn=.                             14分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网