题目内容
【题目】为了让贫困地区的孩子们过一个温暖的冬天,某校阳光志愿者社团组织“这个冬天不再冷”冬衣募捐活动,共有50名志愿者参与.志愿者的工作内容有两项:①到各班做宣传,倡议同学们积极捐献冬衣;②整理、打包募捐上来的衣物.每位志愿者根据自身实际情况,只参与其中的某一项工作.相关统计数据如下表所示:
(1)如果用分层抽样的方法从参与两项工作的志愿者中抽取5人,再从这5人中选2人,那么“至少有1人是参与班级宣传的志愿者”的概率是多少?
(2)若参与班级宣传的志愿者中有12名男生,8名女生,从中选出2名志愿者,用表示所选志愿者中的女生人数,写出随机变量的分布列及数学期望.
【答案】(Ⅰ);(Ⅱ).
【解析】试题分析:(Ⅰ)由分层抽样方法得参与到班级宣传的志愿者被抽中的有2人,参与整理、打包衣物者被抽中的有3人,由此能求出至少有1人是参与班级宣传的志愿者的概率.
(Ⅱ)女生志愿者人数X=0,1,2,分别求出其概率,由此能求出随机变量X的分布列及数学期望.
【解答】(Ⅰ)解:用分层抽样方法,每个人抽中的概率是,
∴参与到班级宣传的志愿者被抽中的有20×=2人,
参与整理、打包衣物者被抽中的有30×=3人,
故“至少有1人是参与班级宣传的志愿者”的概率为:P=1﹣=.
(Ⅱ)解:女生志愿者人数X=0,1,2,
则,
,
,
∴X的分布列为:
∴X的数学期望EX==.
练习册系列答案
相关题目