题目内容

【题目】中,内角 的对边分别为 ,已知

1的值;

2,求的面积.

【答案】(1) (2)

【解析】试题分析:(1)利用同角三角函数间的基本关系求出sinA的值,再将已知等式的左边sinB中的角B利用三角形的内角和定理变形为π﹣(A+C),利用诱导公式得到sinB=sin(A+C),再利用两角和与差的正弦函数公式化简,整理后利用同角三角函数间的基本关系即可求出tanC的值;

(2)由tanC的值,利用同角三角函数间的基本关系求出cosC的值,再利用同角三角函数间的基本关系求出sinC的值,将sinC的值代入中,即可求出sinB的值,由a,sinAsinC的值,利用正弦定理求出c的值,最后由a,c及sinB的值,利用三角形的面积公式即可求出三角形ABC的面积.

试题解析:

(1)∵

整理得:

(2)由知:

又由正弦定理知:,故c===.①

对角A运用余弦定理:.②

解①②得:(舍去)

∴△ABC的面积为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网