题目内容
【题目】已知函数为奇函数
(1)比较的大小,并说明理由.(提示:)
(2)若,且对恒成立,求实数的取值范围.
【答案】(1);(2).
【解析】
试题分析:(1)由于函数为奇函数,,求得,为减函数,通过计算证得,所以;(2)利用函数的奇偶性,化简原不等式为,根据单调性和定义域,列不等式,分离参数求得参数的取值范围.
试题解析:
(1)∵函数为奇函数,
∴,∴,∴,对恒成立,∴,
∴...............2分
∵,
∴...................................4分
又,
∴................................6分
∵在上递减,∴.............7分
(2)由为奇函数可得,
∵,∴,
又在上递减,
∴即对恒成立,
∵在上递增,∴,又,∴..........12分
练习册系列答案
相关题目
【题目】某中学有一调查小组为了解本校学生假期中白天在家时间的情况,从全校学生中抽取人,统计他们平均每天在家的时间(在家时间在小时以上的就认为具有“宅”属性,否则就认为不具有“宅”属性)
具有“宅”属性 | 不具有“宅”属性 | 总计 | |
男生 | 20 | 50 | 70 |
女生 | 10 | 40 | 50 |
总计 | 30 | 90 | 120 |
(1)请根据上述表格中的统计数据填写下面列联表,并通过计算判断能否在犯错误的概率不超过
的前提下认为“是否具有‘宅’属性与性别有关?”
(2)采用分层抽样的方法从具有“宅”属性的学生里抽取一个人的样本,其中男生和女生各多少人?
从人中随机选取人做进一步的调查,求选取的人至少有名女生的概率.
参考公式:,其中.
参考数据:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 5.635 | 7.879 | 10.828 |