题目内容
已知数列{an}的前n项和为Sn,且Sn=2an-2,数列{bn}满足b1=1,且bn+1=bn+2.
(1)求数列{an},{bn}的通项公式;
(2)设cn=an-bn,求数列{cn}的前2n项和T2n.
(1)求数列{an},{bn}的通项公式;
(2)设cn=an-bn,求数列{cn}的前2n项和T2n.
(1)an=2an-1 bn=2n-1. (2)-2n2-n.
(1)当n=1,a1=2;
当n≥2时,an=Sn-Sn-1=2an-2an-1,
∴an=2an-1.
∴{an}是等比数列,公比为2,首项a1=2,∴an=2n.
由bn+1=bn+2,得{bn}是等差数列,公差为2.
又首项b1=1,∴bn=2n-1.
(2)cn=
∴T2n=2+23+…+22n-1-[3+7+…+(4n-1)]
=-2n2-n.
当n≥2时,an=Sn-Sn-1=2an-2an-1,
∴an=2an-1.
∴{an}是等比数列,公比为2,首项a1=2,∴an=2n.
由bn+1=bn+2,得{bn}是等差数列,公差为2.
又首项b1=1,∴bn=2n-1.
(2)cn=
∴T2n=2+23+…+22n-1-[3+7+…+(4n-1)]
=-2n2-n.
练习册系列答案
相关题目