题目内容
1.如图,正方形OABC的边长为1,记曲线y=x2和直线$y=\frac{1}{4}$,x=1,x=0所围成的图形(阴影部分)为Ω,若向正方形OABC内任意投一点M,则点M落在区域Ω内的概率为( )A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{2}{5}$ |
分析 欲求所投的点落在阴影部分内部的概率,须结合定积分计算阴影部分平面区域的面积,再根据几何概型概率计算公式易求解
解答 解:根据题意,正方形OABC的面积为1×1=1,
而阴影部分的面积为${∫}_{0}^{\frac{1}{2}}(\frac{1}{4}-{x}^{2})dx+{∫}_{\frac{1}{2}}^{1}({x}^{2}-\frac{1}{4})dx$=($\frac{1}{4}x-\frac{1}{3}{x}^{3}$)|${\;}_{0}^{\frac{1}{2}}$+($\frac{1}{3}{x}^{3}-\frac{1}{4}x$)|${\;}_{\frac{1}{2}}^{1}$=$\frac{1}{4}$,
由几何概型公式得到,向正方形OABC中任取一点M,点M取自阴影部分的概率$\frac{\frac{1}{4}}{1}=\frac{1}{4}$;
故选A.
点评 本题考查几何概型的计算,涉及定积分在求面积中的应用,关键是正确计算出阴影部分的面积.
练习册系列答案
相关题目
11.已知函数f(x)对定义域R内的任意x都有f(x)=f(4-x),且当x≠2时导函数满足xf′(x)>2f′(x),若2<a<4,则( )
A. | f(2a)<f(3)<f(log2a) | B. | f(3)<f(log2a)<f(2a) | C. | f(log2a)<f(3)<f(2a) | D. | f(log2a)<f(2a)<f(3) |
12.已知数列{an}为递增等比数列,其前n项和为Sn.若a1=1,2an+1+2an-1=5an(n≥2),则S5=( )
A. | $\frac{31}{16}$ | B. | $\frac{31}{32}$ | C. | 31 | D. | 15 |