题目内容
【题目】将函数y=cos2x的图象向左平移 个单位,得到函数y=f(x)cosx的图象,则f(x)的表达式可以是( )
A.f(x)=﹣2sinx
B.f(x)=2sinx
C.f(x)= sin2x
D.f(x)= (sin2x+cos2x)
【答案】A
【解析】解:将函数y=cos2x的图象向左平移 个单位,可得y=cos2(x+ )=cos(2x+ )=﹣sin2x=﹣2cosxsinx, ∵y=f(x)cosx,
∴f(x)=﹣2sinx.
故选:A.
【考点精析】解答此题的关键在于理解函数y=Asin(ωx+φ)的图象变换的相关知识,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.
练习册系列答案
相关题目