题目内容

【题目】设函数f(x)=2017x+sin2017x,g(x)=log2017x+2017x , 则( )
A.对于任意正实数x恒有f(x)≥g(x)
B.存在实数x0 , 当x>x0时,恒有f(x)>g(x)
C.对于任意正实数x恒有f(x)≤g(x)
D.存在实数x0 , 当x>x0时,恒有f(x)<g(x)

【答案】D
【解析】解:设h(x)=f(x)﹣g(x)=2017x+sin2017x﹣log2017x﹣2017x,x>0,

由h(1)=2017+sin20171﹣log20171﹣2017=sin20171>0,

h(2)=2017×2+sin20172﹣log20172﹣20172<0,

可得h(1)h(2)<0,

且h′(x)=2017+2017sin2016xcosx﹣ ﹣2017xln2017<0,

可得h(x)在(1,2)递减,

可得h(x)在(1,2)有一个零点,设为x0

且当x>x0时,h(x)<h(x0)=0,即f(x)<g(x),

所以答案是:D.

【考点精析】通过灵活运用函数的最值及其几何意义,掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网