题目内容

【题目】解答题
(Ⅰ)已知函数f(x)=|x+1|+|x﹣a|(a>0),若不等式f(x)≥5的解集为{x|x≤﹣2或x≥3},求a的值;
(Ⅱ) 已知实数a,b,c∈R+ , 且a+b+c=m,求证: + +

【答案】解:(Ⅰ) 因为a>0,所以 , 又因为不等式f(x)≥5的解集为{x|x≤﹣2或x≥3},就是x=﹣2或x=3时,f(x)=5,解得a=2.(5分)
(Ⅱ)证明:
=
=
【解析】(Ⅰ)化简函数f(x)=|x+1|+|x﹣a|(a>0)为分段函数,然后通过不等式f(x)≥5的解集为{x|x≤﹣2或x≥3},求a的值;(Ⅱ)利用“1”的代换,利用基本不等式转化证明即可.
【考点精析】解答此题的关键在于理解不等式的证明的相关知识,掌握不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.

练习册系列答案
相关题目

【题目】已知二次函数的最小值为3,且.

求函数的解析式;

(2)若偶函数(其中),那么, 在区间上是否存在零点?请说明理由.

【答案】(1)(2)存在零点

【解析】试题分析:(1)待定系数法,己知函数类型为二次函数,又知f(-1)=f(3),所以对称轴是x=1,且函数最小值f(1)=3,所设函数,且,代入f(-1)=11,可解a。

2由题意可得,代入,由和根的存在性定理, 在区间(12)上存在零点。

试题解析:1)因为是二次函数,且

所以二次函数图像的对称轴为

的最小值为3,所以可设,且

,得

所以

2由(1)可得

因为

所以在区间(12)上存在零点.

点睛

(1)对于求己知类型函数的的解析式,常用待定系数法,由于二次函数的表达式形式比较多,有一般式,两点式,顶点式,由本题所给条件知道对称轴与顶点坐标,所以设顶点式。

(2)对于判定函数在否存在零点问题,一般解决此类问题的三步曲是:①先通过观察函数图象再估算出根所在的区间;②根据方程根的存在性定理证明根是存在的;③最后根据函数的性质证明根是唯一的.本题给了区间,可直接用根的存在性定理。

型】解答
束】
20

【题目】《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过3500元的部分不纳税,超过3500元的部分为全月税所得额,此项税款按下表分段累计计算:

全月应纳税所得额

税率

不超过1500元的部分

超过1500元至4500元的部分

超过4500元至9000元的部分

(1)已知张先生的月工资,薪金所得为10000元,问他当月应缴纳多少个人所得税?

(2)设王先生的月工资,薪金所得为,当月应缴纳个人所得税为元,写出的函数关系式;

(3)已知王先生一月份应缴纳个人所得税为303元,那么他当月的工资、薪金所得为多少?

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网