题目内容
【题目】已知函数.
(1)判断并证明函数的奇偶性;
(2)判断当时函数的单调性,并用定义证明;
(3)若定义域为,解不等式.
【答案】(1)奇函数(2)增函数(3)
【解析】试题分析:(1)判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。(2)利函数单调性定义证明单调性,按假设,作差,化简,判断,下结论五个步骤。(3)由(1)(2)奇函数在(-1,1)为单调函数,
原不等式变形为f(2x-1)<-f(x),即f(2x-1)<f(-x),再由函数的单调性及定义(-1,1)求解得x范围。
试题解析:(1)函数为奇函数.证明如下:
定义域为
又
为奇函数
(2)函数在(-1,1)为单调函数.证明如下:
任取,则
,
即
故在(-1,1)上为增函数
(3)由(1)、(2)可得
则
解得:
所以,原不等式的解集为
【点睛】
(1)奇偶性:判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。
(2)单调性:利函数单调性定义证明单调性,按假设,作差,化简,定号,下结论五个步骤。
【题型】解答题
【结束】
22
【题目】已知函数.
(1)若的定义域和值域均是,求实数的值;
(2)若在区间上是减函数,且对任意的,都有,求实数的取值范围;
(3)若,且对任意的,都存在,使得成立,求实数的取值范围.
【答案】(1)(2)(3)
【解析】试题分析:(1)先利用二次函数的性质确定函数的单调递减区间为,故在单调递减,然后由定义域与值域列出等式关系,从而求解即可;(2)由(1)可知,初步确定的取值范围,然后确定时函数的最大值,从中求解不等式组即可;(3)将“对任意的,都存在,使得成立”转化为时,的值域包含了在的值域,然后进行分别求在的值域,从集合间的包含关系即可求出的取值范围.
试题解析:(1)∵
∴在上单调递减,又,∴在上单调递减,
∴,∴,∴4分
(2)∵在区间上是减函数,∴,∴
∴,
∴时,
又∵对任意的,都有,
∴,即,也就是
综上可知8分
(3)∵在上递增,在上递减,
当时,,
∵对任意的,都存在,使得成立
∴
∴,所以13分
【题目】已知二次函数的最小值为3,且.
求函数的解析式;
(2)若偶函数(其中),那么, 在区间上是否存在零点?请说明理由.
【答案】(1)(2)存在零点
【解析】试题分析:(1)待定系数法,己知函数类型为二次函数,又知f(-1)=f(3),所以对称轴是x=1,且函数最小值f(1)=3,所设函数,且,代入f(-1)=11,可解a。
(2)由题意可得,代入,由和根的存在性定理, 在区间(1,2)上存在零点。
试题解析:(1)因为是二次函数,且
所以二次函数图像的对称轴为.
又的最小值为3,所以可设,且
由,得
所以
(2)由(1)可得,
因为,
所以在区间(1,2)上存在零点.
【点睛】
(1)对于求己知类型函数的的解析式,常用待定系数法,由于二次函数的表达式形式比较多,有一般式,两点式,顶点式,由本题所给条件知道对称轴与顶点坐标,所以设顶点式。
(2)对于判定函数在否存在零点问题,一般解决此类问题的三步曲是:①先通过观察函数图象再估算出根所在的区间;②根据方程根的存在性定理证明根是存在的;③最后根据函数的性质证明根是唯一的.本题给了区间,可直接用根的存在性定理。
【题型】解答题
【结束】
20
【题目】《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过3500元的部分不纳税,超过3500元的部分为全月税所得额,此项税款按下表分段累计计算:
全月应纳税所得额 | 税率 |
不超过1500元的部分 | |
超过1500元至4500元的部分 | |
超过4500元至9000元的部分 |
(1)已知张先生的月工资,薪金所得为10000元,问他当月应缴纳多少个人所得税?
(2)设王先生的月工资,薪金所得为,当月应缴纳个人所得税为元,写出与的函数关系式;
(3)已知王先生一月份应缴纳个人所得税为303元,那么他当月的工资、薪金所得为多少?