题目内容

【题目】已知函数f(x)= ﹣k( +lnx),若x=2是函数f(x)的唯一一个极值点,则实数k的取值范围为(
A.(﹣∞,e]
B.[0,e]
C.(﹣∞,e)
D.[0,e)

【答案】C
【解析】解:∵函数f(x)= ﹣k( +lnx), ∴函数f(x)的定义域是(0,+∞)
∴f′(x)= ﹣k(﹣ + )=
∵x=2是函数f(x)的唯一一个极值点
∴x=2是导函数f′(x)=0的唯一根.
∴ex﹣kx=0在(0,+∞)无变号零点,
令g(x)=ex﹣kx
g′(x)=ex﹣k
①k≤0时,g′(x)>0恒成立.g(x)在(0,+∞)时单调递增的
g(x)的最小值为g(0)=1,g(x)=0无解
②k>0时,g′(x)=0有解为:x=lnk
0<x<lnk时,g′(x)<0,g(x)单调递减
lnk<x时,g′(x)>0,g(x)单调递增
∴g(x)的最小值为g(lnk)=k﹣klnk
∴k﹣klnk>0
∴k<e,
由y=ex和y=ex图象,它们切于(1,e),
综上所述,k≤e.
故选C
由f(x)的导函数形式可以看出,需要对k进行分类讨论来确定导函数为0时的根.

练习册系列答案
相关题目

【题目】已知直线lx2y2m20

(1)求过点(23)且与直线l垂直的直线的方程;

(2)若直线l与两坐标轴所围成的三角形的面积大于4,求实数m的取值范围.

【答案】(1);(2)

【解析】试题分析:(1)由直线的斜率为,可得所求直线的斜率为,代入点斜式方程,可得答案;(2)直线与两坐标轴的交点分别为,则所围成的三角形的面积为,根据直线与两坐标轴所围成的三角形的面积为大于,构造不等式,解得答案.

试题解析:(1)与直线l垂直的直线的斜率为-2

因为点(23)在该直线上,所以所求直线方程为y3=-2(x2)

故所求的直线方程为2xy70

(2) 直线l与两坐标轴的交点分别为(-2m+2,0),(0,m-1),

则所围成的三角形的面积为×|-2m+2|×|m-1|.

由题意可知×|-2m+2|×|m-1|>4,化简得(m-1)2>4,

解得m>3或m<-1,

所以实数m的取值范围是(-,-1)∪(3,+∞)

【方法点睛】本题主要考查直线的方程,两条直线平行与斜率的关系,属于简单题. 对直线位置关系的考查是热点命题方向之一,这类问题以简单题为主,主要考查两直线垂直与两直线平行两种特殊关系:在斜率存在的前提下,(1 ;(2,这类问题尽管简单却容易出错,特别是容易遗忘斜率不存在的情况,这一点一定不能掉以轻心.

型】解答
束】
18

【题目】在平面直角坐标系中,已知经过原点O的直线与圆交于两点。

(1)若直线与圆相切,切点为B,求直线的方程;

(2)若,求直线的方程;

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网