题目内容
【题目】已知直线l:x-2y+2m-2=0.
(1)求过点(2,3)且与直线l垂直的直线的方程;
(2)若直线l与两坐标轴所围成的三角形的面积大于4,求实数m的取值范围.
【答案】(1);(2)
【解析】试题分析:(1)由直线的斜率为,可得所求直线的斜率为,代入点斜式方程,可得答案;(2)直线与两坐标轴的交点分别为,则所围成的三角形的面积为,根据直线与两坐标轴所围成的三角形的面积为大于,构造不等式,解得答案.
试题解析:(1)与直线l垂直的直线的斜率为-2,
因为点(2,3)在该直线上,所以所求直线方程为y-3=-2(x-2),
故所求的直线方程为2x+y-7=0.
(2) 直线l与两坐标轴的交点分别为(-2m+2,0),(0,m-1),
则所围成的三角形的面积为×|-2m+2|×|m-1|.
由题意可知×|-2m+2|×|m-1|>4,化简得(m-1)2>4,
解得m>3或m<-1,
所以实数m的取值范围是(-∞,-1)∪(3,+∞).
【方法点睛】本题主要考查直线的方程,两条直线平行与斜率的关系,属于简单题. 对直线位置关系的考查是热点命题方向之一,这类问题以简单题为主,主要考查两直线垂直与两直线平行两种特殊关系:在斜率存在的前提下,(1) ;(2),这类问题尽管简单却容易出错,特别是容易遗忘斜率不存在的情况,这一点一定不能掉以轻心.
【题型】解答题
【结束】
18
【题目】在平面直角坐标系中,已知经过原点O的直线与圆交于两点。
(1)若直线与圆相切,切点为B,求直线的方程;
(2)若,求直线的方程;
【答案】(1);(2)
【解析】试题分析:(1)由直线与圆相切,得圆心到直线的距离,列方程求出的值,从而求出直线的方程;(2)利用的中点,结合,设出所求直线的方程,利用圆心到直线的距离和勾股定理列方程,可以求出的方程.
试题解析:(1)由相切得化简得: ,
解得,由于,故
由直线与圆解得切点,得
(2)取AB中点M,则,又,所以,
设,圆心到直线的距离为,由勾股定理得: ,
解得,
设所求直线的方程为, ,解得,