题目内容
如图,正方形ABCD内接于椭圆
=1(a>b>0),且它的四条边与坐标轴平行,正方形MNPQ的顶点M、N在椭圆上,顶点P、Q在正方形的边AB上,且A、M都在第一象限.
(1)若正方形ABCD的边长为4,且与y轴交于E、F两点,正方形MNPQ的边长为2.
①求证:直线AM与△ABE的外接圆相切;
②求椭圆的标准方程;
(2)设椭圆的离心率为e,直线AM的斜率为k,求证:2e2-k是定值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041711027692.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240417110583473.jpg)
(1)若正方形ABCD的边长为4,且与y轴交于E、F两点,正方形MNPQ的边长为2.
①求证:直线AM与△ABE的外接圆相切;
②求椭圆的标准方程;
(2)设椭圆的离心率为e,直线AM的斜率为k,求证:2e2-k是定值.
(1)①见解析②
=1(2)见解析
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041711074723.png)
(1)证明:①依题意:A(2,2),M(4,1),E(0,-2),∴
=(2,-1),
=(-2,-4),∴
·
=0,∴AM⊥AE.
∵AE为Rt△ABE外接圆直径,∴直线AM与△ABE的外接圆相切.
②解:由
解得椭圆标准方程为
=1.
(2)证明:设正方形ABCD的边长为2s,正方形MNPQ的边长为2t,则A(s,s),M(s+2t,t),代入椭圆方程
=1,得
即
∴e2=1-
.∵k=
,∴2e2-k=2为定值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041711089488.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041711121424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041711089488.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041711121424.png)
∵AE为Rt△ABE外接圆直径,∴直线AM与△ABE的外接圆相切.
②解:由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240417111671104.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041711074723.png)
(2)证明:设正方形ABCD的边长为2s,正方形MNPQ的边长为2t,则A(s,s),M(s+2t,t),代入椭圆方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041711027692.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240417112141426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240417112451419.png)
∴e2=1-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041711261767.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041711277757.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目