题目内容
已知椭圆
=1(a>b>0)的离心率为
,短轴的一个端点为M(0,1),直线l:y=kx-
与椭圆相交于不同的两点A、B.
(1)若AB=
,求k的值;
(2)求证:不论k取何值,以AB为直径的圆恒过点M.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008306695.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008321413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008337327.png)
(1)若AB=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008352609.png)
(2)求证:不论k取何值,以AB为直径的圆恒过点M.
(1)k=±1.(2)见解析
(1)解:由题意知
=
,b=1.由a2=b2+c2可得c=b=1,a=
,
∴椭圆的方程为
+y2=1.由
得(2k2+1)x2-
kx-
=0.
Δ=
k2-4(2k2+1)×
=16k2+
>0恒成立,
设A(x1,y1),B(x2,y2),则x1+x2=
,x1x2=-
.
∴AB=
·|x1-x2|=
,化简得23k4-13k2-10=0,即(k2-1)(23k2+10)=0,解得k=±1.
(2)证明:∵
=(x1,y1-1),
=(x2,y2-1),
∴
=x1x2+(y1-1)(y2-1)=(1+k2)x1x2-
k(x1+x2)+
=-
-
+
=0.∴不论k取何值,以AB为直径的圆恒过点M.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008384352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008321413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008415344.png)
∴椭圆的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008430451.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240420084771143.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008493373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008508430.png)
Δ=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008508430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008555702.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008571464.png)
设A(x1,y1),B(x2,y2),则x1+x2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008586711.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008602741.png)
∴AB=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008618480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240420086332257.png)
(2)证明:∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008649481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008680495.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008696620.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008493373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008508430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008758865.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008836805.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042008508430.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目