题目内容
【题目】已知椭圆:的右焦点为,离心率为,是椭圆上位于第一象限内的任意一点,为坐标原点,关于的对称点为,,圆:.
(1)求椭圆和圆的标准方程;
(2)过点作与圆相切于点,使得点,点在的两侧.求四边形面积的最大值.
【答案】(1)椭圆的标准方程为,圆的标准方程;(2)
【解析】
(1)设椭圆左焦点为,连接,,易知四边形为平行四边形,则,结合离心率为,可求得,即可求得椭圆和圆的标准方程;
(2)设,代入椭圆方程可得到的关系式,然后分别求得的面积的表达式,即可得到四边形面积的表达式,结合的关系式,求面积的最大值即可.
(1)设椭圆左焦点为,连接,,
因为,,所以四边形为平行四边形,
所以,所以,
又离心率为,所以,.
故所求椭圆的标准方程为,圆的标准方程.
(2)设,则,故.
所以,所以,
所以.
又,,所以.
故.
由,得,即,
所以,
当且仅当,即,时等号成立.
练习册系列答案
相关题目
【题目】已知某种细菌的适宜生长温度为,为了研究该种细菌的繁殖数量(单位:个)随温度(单位:)变化的规律,收集数据如下:
温度/ | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
繁殖数量/个 | 20 | 25 | 33 | 27 | 51 | 112 | 194 |
对数据进行初步处理后,得到了一些统计量的值,如下表所示:
18 | 66 | 3.8 | 112 | 4.3 | 1428 | 20.5 |
其中,.
(1)请绘出关于的散点图,并根据散点图判断与哪一个更适合作为该种细菌的繁殖数量关于的回归方程类型(结果精确到0.1);
(2)当温度为时,该种细菌的繁殖数量的预报值为多少?
参考公式:对于一组数据,其回归线的斜率和截距的最小二乘估计分别为:,.参考数据:.