题目内容
【题目】已知指数函数y=g(x)满足g(3)=8,又定义域为实数集R的函数f(x)= 是奇函数.
(1)讨论函数y=f(x)的单调性;
(2)若对任意的t∈R,不等式f(2t﹣3t2)+f(t2﹣k)>0恒成立,求实数k的取值范围.
【答案】
(1)解:设g(x)=ax,(a>0且a≠1),g(3)=a3=8,
故a=2,f(x)= ,
任取实数x1<x2,
则f(x1)﹣f(x2)
= ﹣
= ,
∵x1<x2,考虑y=2x在R递增,
∴ > >0,
∴ ﹣ >0,(1+ )(1+ )>0,
∴f(x1)>f(x2),
∴y=f(x)在R递减;
(2)解:要使f(2t﹣3t2)+f(t2﹣k)>0恒成立,
即f(2t﹣3t2)>﹣f(t2﹣k)成立,
即f(2t﹣3t2)>f(k﹣t2)成立,
由(1)得:2t﹣3t2<k﹣t2,即k>﹣2t2+2t恒成立,
设h(t)=﹣2t2+2t=﹣2 + ,
h(t)max= ,
故k> .
【解析】(1)根据g(3)=a3=8,求出a的值,从而求出f(x)的解析式,根据函数单调性的定义判断函数的单调性即可;(2)根据函数f(x)的单调性和奇偶性得到2t﹣3t2<k﹣t2,即k>﹣2t2+2t恒成立,设h(t)=﹣2t2+2t=﹣2 + ,根据二次函数的性质求出k的范围即可.
练习册系列答案
相关题目