题目内容
【题目】函数f(x)=loga(ax+1)+mx是偶函数.
(1)求m;
(2)当a>1时,若函数f(x)的图象与直线l:y=﹣mx+n无公共点,求n的取值范围.
【答案】
(1)解:∵函数f(x)=loga(ax+1)+mx是偶函数.
∴f(﹣x)=f(x),
即loga(a﹣x+1)﹣mx=loga(ax+1)+mx,
即loga( )=﹣x=2mx,
解得:m=﹣
(2)解:令loga(ax+1)+mx=﹣mx+n,
即n=loga(ax+1)+2mx=loga(ax+1)﹣x,
n′= ﹣1= <0恒成立,
即n=loga(ax+1)﹣x为减函数,
∵ →+∞,
→0,
故n∈(0,+∞),
若函数f(x)的图象与直线l:y=﹣mx+n无公共点,则n∈(﹣∞,0]
【解析】(1)若函数f(x)=loga(ax+1)+mx是偶函数.则f(﹣x)=f(x),进而可得m的值;(2)令loga(ax+1)+mx=﹣mx+n,即n=loga(ax+1)+2mx=loga(ax+1)﹣x,求出函数的值域,可得答案.
练习册系列答案
相关题目