题目内容
17.椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{2}$=1的焦点为F1,F2,点P在椭圆上,若PF1=4,则∠F1PF2的大小为$\frac{2}{3}π$.分析 利用椭圆的定义求出PF2的值,通过在△F1PF2中利用余弦定理计算即得结论.
解答 解:由椭圆方程及PF1=4可知PF2=6-4=2,
所以cos∠F1PF2=$\frac{P{{F}_{1}}^{2}+P{{F}_{2}}^{2}-{F}_{1}{{F}_{2}}^{2}}{2P{F}_{1}•P{F}_{2}}$=$\frac{16+4-28}{2×4×2}$=-$\frac{1}{2}$,
所以∠F1PF2=$\frac{2}{3}$π,
故答案为:$\frac{2}{3}π$.
点评 本题以椭圆为载体,考查求角的大小,涉及椭圆定义、余弦定理等基础知识,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
8.求满足下列条件的椭圆方程:
(1)长轴在x轴上,长轴长等于12,离心率等于$\frac{2}{3}$;
(2)椭圆经过点(-6,0)和(0,8);
(3)椭圆的一个焦点到长轴两端点的距离分别为10和4.
(1)长轴在x轴上,长轴长等于12,离心率等于$\frac{2}{3}$;
(2)椭圆经过点(-6,0)和(0,8);
(3)椭圆的一个焦点到长轴两端点的距离分别为10和4.
12.若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,其参考数据如下:
那么方程x3+x2-2x-2=0的一个近似根(精确度为0.05)可以是( )
f (1)=-2 | f (1.5)=0.625 | f (1.25)=-0.984 |
f (1.375)=-0.260 | f (1.4375)=0.162 | f (1.40625)=-0.054 |
A. | 1.25 | B. | 1.375 | C. | 1.42 | D. | 1.5 |
9.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上的点到左准线的距离为5,那么它到右焦点的距离为( )
A. | $\frac{25}{4}$ | B. | $\frac{15}{2}$ | C. | 4 | D. | 6 |
6.已知全集U={1,2,3,4,5},集合 A={1,4},B={1,3,5},则(∁UA)∩(∁UB)=( )
A. | {2} | B. | {1,2} | C. | {3,5} | D. | {4,5} |