题目内容

2.已知实数x,y,z满足2x+y+3z=32,则$\sqrt{{{(x-1)}^2}+{{(y+2)}^2}+{z^2}}$的最小值为$\frac{16\sqrt{14}}{7}$.

分析 由条件利用柯西不等式(22+12+32)[(x-1)2+(y+2)2+z2]≥(2x-2+y+2+3z)2=322,求得$\sqrt{{{(x-1)}^2}+{{(y+2)}^2}+{z^2}}$的最小值.

解答 解:12+22+32=14,∴由柯西不等式可得(22+12+32)[(x-1)2+(y+2)2+z2]≥(2x-2+y+2+3z)2=322
∴$\sqrt{{{(x-1)}^2}+{{(y+2)}^2}+{z^2}}$≥$\frac{16\sqrt{14}}{7}$,即$\sqrt{{{(x-1)}^2}+{{(y+2)}^2}+{z^2}}$的最小值是$\frac{16\sqrt{14}}{7}$,
故答案为:$\frac{16\sqrt{14}}{7}$.

点评 本题主要考查了函数的最值,以及柯西不等式的应用,解题的关键是利用柯西不等式(22+12+32)[(x-1)2+(y+2)2+z2]≥(2x-2+y+2+3z)2=322,进行解决.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网