题目内容
已知定义在R上的函数f(x)对任意实数x、y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,又f(1)=-
.
(1)求证:f(x)为奇函数; (2)求证:f(x)在R上是减函数;
(3)求f(x)在[-3,6]上的最大值与最小值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060438549390.png)
(1)求证:f(x)为奇函数; (2)求证:f(x)在R上是减函数;
(3)求f(x)在[-3,6]上的最大值与最小值.
(1)见解析;(2)见解析;(3)最大值为2,最小值为-4
试题分析:(1)欲证函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060438565447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060438581564.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060438596462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060438565447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060438721407.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060438752810.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060438768430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060438783629.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060438768430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060438815495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060438846486.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060438861437.png)
试题解析:令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060438877472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060438908738.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060438924481.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060438721407.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060438752810.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060438986596.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060438565447.png)
证明:设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060439033568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060439049430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060439064524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060439080651.png)
从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240604390951185.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060438565447.png)
解:由(2)知,所求函数的最大值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060439142456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060439158453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240604392051164.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240604392201300.png)
于是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060438565447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824060439251449.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目