题目内容
【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB=AC=5,BB1=BC=6,D,E分别是AA1和B1C的中点
(1)求证:DE∥平面ABC;
(2)求三棱锥E﹣BCD的体积.
【答案】
(1)证明:取BC中点G,连接AG,EG,
因为E是B1C的中点,所以EG∥BB1,
且 .
由直棱柱知,AA1∥BB1,AA1=BB1,而D是AA1的中点,
所以EG∥AD,EG=AD
所以四边形EGAD是平行四边形,
所以ED∥AG,又DE平面ABC,AG平面ABC
所以DE∥平面ABC.
(2)解:因为AD∥BB1,所以AD∥平面BCE,
所以VE﹣BCD=VD﹣BCE=VA﹣BCE=VE﹣ABC,
由(1)知,DE∥平面ABC,
所以 .(14分)
【解析】(1)取BC中点G,连接AG,EG,通过证明四边形EGAD是平行四边形,推出ED∥AG,然后证明DE∥平面ABC.(2)证明AD∥平面BCE,利用VE﹣BCD=VD﹣BCE=VA﹣BCE=VE﹣ABC,然后求解几何体的体积.
练习册系列答案
相关题目
【题目】连锁经营公司所属5个零售店某月的销售额利润资料如表:
商品名称 | A | B | C | D | E |
销售额x/千万元 | 3 | 5 | 6 | 7 | 9 |
利润额y/百万元 | 2 | 3 | 3 | 4 | 5 |
(参考公式: = = , = ﹣ x)
(1)画出销售额和利润额的散点图
(2)若销售额和利润额具有相关关系,试计算利润额y对销售额x的回归直线方程.
(3)估计要达到1000万元的利润额,销售额约为多少万元.