题目内容

4.某等差数列前40项之和为10,前16项之和为100,求此数列的通项公式.

分析 设出等差数列的首项和公差,根据题意列方程组求出首项和公差,即可写出它的通项公式.

解答 解:设该等差数列的首项为a1,公差为d,
由题意得
$\left\{\begin{array}{l}{{S}_{40}=4{0a}_{1}+\frac{1}{2}×40×39d=10}\\{{S}_{16}=1{6a}_{1}+\frac{1}{2}×16×15d=100}\end{array}\right.$,
化简得$\left\{\begin{array}{l}{{4a}_{1}+78d=1}\\{{4a}_{1}+30d=25}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{a}_{1}=10}\\{d=-\frac{1}{2}}\end{array}\right.$;
∴此数列的通项公式为
an=a1+(n-1)d=10-$\frac{1}{2}$(n-1)=$\frac{21}{2}$-$\frac{1}{2}$n.

点评 本题考查了等差数列的通项公式与前n项和公式的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网