题目内容
【题目】在△ABC中,角A,B,C所对的分别为a,b,c,且acosB=(3c﹣b)cosA.
(1)若asinB=2 ,求b;
(2)若a=2 ,且△ABC的面积为 ,求△ABC的周长.
【答案】
(1)解:∵acosB=(3c﹣b)cosA,∴sinAcosB=(3sinC﹣sinB)cosA,∴sin(A+B)=sinC=3sinCcosA,sinC≠0,∴cosA= ,sinA= = .
∵ ,∴
(2)解:∵△ABC的面积为 ,∴ ,得bc=3,
∵ ,∴ ,
∴ ,即(b+c)2=16,
∵b>0,c>0,∴b+c=4,
∴△ABC的周长为
【解析】(1)由acosB=(3c﹣b)cosA,利用正弦定理可得:sinAcosB=(3sinC﹣sinB)cosA,再利用和差公式、诱导公式可得cosA= ,sinA= ,再利用正弦定理即可得出.(2)由△ABC的面积为 ,可得bc=3,再利用余弦定理即可得出.
【考点精析】关于本题考查的正弦定理的定义和余弦定理的定义,需要了解正弦定理:;余弦定理:;;才能得出正确答案.
练习册系列答案
相关题目