题目内容
【题目】已知函数f(x)=x|x-4| (x∈R)
(1)用分段形式写出函数f(x)的表达式,并作出函数f(x)的图象;
(2) 根据图象指出f(x)的单调区间,并写出不等式f(x)>0的解集;
(3) 若h(x)=f(x)-k有三个零点,写出k的取值范围.
【答案】(1)见解析;(2)见解析;(3)
【解析】
分析:(1)根据绝对值的定义,利用零点分段法,分当时和当时两种情况,化简函数的解析式,最后可将函数写出分段函数的形式;根据分段函数图象分段画的原则,结合二次函数的图象和性质,可作出图象;
(2)结合图象可得函数的单调区间及不等式的解集;;
(3)根据(2)中函数的图象,结合函数的极大值为0,极小值为-4,可得 有三个零点时的取值范围.
详解:
(1)当时,,
当时,
综上所述: ;根据分段函数图象的作法,其函数图象如图所示:
(2)单调增区间: 单调减区间: 、
不等式解集为: ;
(3)写出的取值范围是:
练习册系列答案
相关题目
【题目】(Ⅰ)如表所示是某市最近5年个人年平均收入表节选.求y关于x的回归直线方程,并估计第6年该市的个人年平均收入(保留三位有效数字).
年份x | 1 | 2 | 3 | 4 | 5 |
收入y(千元) | 21 | 24 | 27 | 29 | 31 |
其中,, 附1:= ,=﹣
(Ⅱ)下表是从调查某行业个人平均收入与接受专业培训时间关系得到2×2列联表:
受培时间一年以上 | 受培时间不足一年 | 总计 | |
收入不低于平均值 | 60 | 20 | |
收入低于平均值 | 10 | 20 | |
总计 | 100 |
完成上表,并回答:能否在犯错概率不超过0.05的前提下认为“收入与接受培训时间有关系”.
附2:
P(K2≥k0) | 0.50 | 0.40 | 0.10 | 0.05 | 0.01 | 0.005 |
k0 | 0.455 | 0.708 | 2.706 | 3.841 | 6.635 | 7.879 |
附3:
K2=.(n=a+b+c+d)