题目内容

15.函数f(x)是定义在R上的奇函数,且f(1)=0,当x>0时,有$\frac{xf′(x)-f(x)}{{x}^{2}}$>0恒成立,则不等式f(x)>0的解集为(  )
A.(-1,0)∪(1,+∞)B.(-1,0)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-∞,-1)∪(0,1)

分析 构造新函数g(x)=$\frac{f(x)}{x}$,得到函数g(x)的单调性,结合函数的奇偶性得到函数g(x)的图象,从而求出不等式的解集.

解答 解:令g(x)=$\frac{f(x)}{x}$,则g′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,
由题意知g(x)=$\frac{f(x)}{x}$在(0,+∞)上是增函数,且g(1)=0,
∵f(x)是R上的奇函数,
∴g(x)是R上的偶函数.
$\frac{f(x)}{x}$的草图如图所示:

由图象知:当x>1时,f(x)>0,
当-1<x<0时,f(x)>0.
∴不等式f(x)>0的解集为(-1,0)∪(1,+∞).

点评 本题考查了函数的单调性,函数的奇偶性,考查导数的应用,构造函数g(x)是解答本题的关键,本题是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网