题目内容

14.已知点P是抛物线y2=2x上的一个动点,则点P到点M(0,2)的距离与点P到该抛物线准线的距离之和的最小值为(  )
A.3B.$\frac{\sqrt{17}}{2}$C.$\sqrt{5}$D.$\frac{9}{2}$

分析 先求出抛物线的焦点坐标,再由抛物线的定义可得d=|PF|+|PM|≥|MF|,再求出|MF|的值即可.

解答 解:依题设P在抛物线准线的投影为P′,抛物线的焦点为F,
则F($\frac{1}{2}$,0),
依抛物线的定义知P到该抛物线准线的距离为|PP′|=|PF|,
则点P到点M(0,2)的距离与P到该抛物线准线的距离之和,
d=|PF|+|PM|≥|MF|=$\sqrt{\frac{1}{4}+4}$=$\frac{\sqrt{17}}{2}$.
即有当M,P,F三点共线时,取得最小值,为$\frac{\sqrt{17}}{2}$.
故选:B.

点评 本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网