题目内容
【题目】已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1
(1)求曲线C的方程.
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有?若存在,求出m的取值范围,若不存在,请说明理由.
【答案】(1) (2)
【解析】
解:(Ⅰ)设P(x,y)是曲线C上任意一点,那么点P(x,y)满足:
化简得.
(Ⅱ)设过点M(m,0)(m>0)的直线l与曲线C的交点为A,B.
设l的方程为x=ty+m,由得,△=16(+m)>0,
于是①
又.
=+1+<0②
又,于是不等式②等价于
③
由①式,不等式③等价于
④
对任意实数t,的最小值为0,所以不等式④对于一切t成立等价于
,即.
由此可知,存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有,且m的取值范围.
【题目】近期,长沙市公交公司推出“湘行一卡通”扫码支付乘车活动,活动设置了一段时间的推广期,乘客只需利用手机下载“湘行一卡通”,再通过扫码即可支付乘车费用.相比传统的支付方式,扫码支付方式极为便利,吸引了越来越多的人使用扫码支付,某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用表示活动推出的天数,表示每天使用扫码支付的人次(单位:十人次),统计数据如下表所示:
根据以上数据,绘制了散点图.
(1)根据散点图判断,在推广期内,与(,均为大于零的常数)哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表中的数据,建立关于的回归方程,并预测活动推出第天使用扫码支付的人次;
(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下
支付方式 | 现金 | 乘车卡 | 扫码 |
比例 |
假设该线路公交车票价为元,使用现金支付的乘客无优惠,使用乘车卡付的乘客享受折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有的概率享受折优惠,有的概率享受折优惠,有的概率享受折优惠.根据给定数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,求一名乘客一次乘车的平均费用.参考数据:
其中:,
参考公式:对于一组数据,,…,…,,其回归直线的斜率和截距的最小二乘估计公式分别为: ,.