题目内容
【题目】已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点.点M(3,m)在双曲线上.
(1)求双曲线的方程;
(2)求证:;
(3)求△F1MF2的面积.
【答案】(1);(2)证明见解析;(3)6
【解析】
(1)根据设双曲线的方程为,由点在双曲线上,代入,即可得到双曲线的方程;
(2)根据题意求出,,根据向量数量积的坐标运算得到以及由点M在双曲线上得到,即可证明;
(3)以为底,以点M的纵坐标为高,即可得到△F1MF2的面积.
(1)因为,所以双曲线的实轴、虚轴相等.则可设双曲线方程为.因为双曲线过点,所以16-10=λ,即λ=6.所以双曲线方程为.
(2)证明:不妨设F1,F2分别为左、右焦点,则, 所以,因为M点在双曲线上,所以9-m2=6,即m2-3=0,所以.
(3)的底.由(2)知.所以的高,所以
练习册系列答案
相关题目
【题目】如图,在正方体中,点,分别为棱,的中点,点为上底面的中心,过,,三点的平面把正方体分为两部分,其中含的部分为,不含的部分为,连结和的任一点,设与平面所成角为,则的最大值为
A. B.
C. D.
【题目】通过市场调查,得到某种产品的资金投入x(单位:万元)与获得的利润y(单位:万元)的数据,如表所示:
资金投入x | 2 | 3 | 4 | 5 | 6 |
利润y | 2 | 3 | 5 | 6 | 9 |
(1)画出数据对应的散点图;
(2)根据上表提供的数据,用最小二乘法求线性回归直线方程;
(3)现投入资金10万元,求获得利润的估计值为多少万元?
参考公式: