题目内容
【题目】已知函数f(x)是一次函数,g(x)是反比例函数,且满足f[f(x)]=x+2,g(1)=﹣1
(1)求函数f(x)和g(x);
(2)设h(x)=f(x)+g(x),判断函数h(x)在(0,+∞)上的单调性,并用定义加以证明.
【答案】
(1)解:因为f(x)是一次函数,g(x)是反比例函数
∴设f(x)=ax+b(a≠0),g(x)= (k≠0),
∵f[f(x)]=x+2,
∴a(ax+b)+b=x+2,
∴a2x+(a+1)b=x+2,
∴ ,解得:a=1,b=1,
故f(x)=x+1;
∵g(1)=﹣1,故k=﹣1,
故g(x)=﹣
(2)解:判断:函数h(x)在(0,+∞)上是增函数,
由(1)知h(x)= +1,设x1,x2是(0,+∞)上的任意两个实数,且x1<x2,
h(x1)﹣h(x2)=(x1﹣ )﹣(x2﹣ )=(x1﹣x2)(1+ ),
∵0<x1<x2,∴x1﹣x2<0,x1x2>0,
∴h(x1)﹣h(x2)<0,即h(x1)<h(x2),
∴函数h(x)在(0,+∞)递增
【解析】(1)设出函数的解析式,通过待定系数法求出函数的解析式即可;(2)求出h(x)的解析式,根据函数单调性的定义判断函数的单调性即可.
【考点精析】本题主要考查了函数单调性的判断方法的相关知识点,需要掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较才能正确解答此题.
练习册系列答案
相关题目