题目内容
【题目】如图,在四面体中,平面平面, , , .
(Ⅰ)若, ,求四面体的体积;
(Ⅱ)若二面角为,求异面直线与所成角的余弦值.
【答案】(1) (2)
【解析】试题分析:(1)先确定四面体的高: 设为的中点,则,再由面面垂直性质定理得,最后根据锥体体积公式求体积(2)先确定二面角平面角: 设为边的中点,由(1)可得为二面角的平面角,再利用平移找线线角: 设分别为边的中点,则根据三角形中位线性质可得,从而是异面直线与所成的角或其补角.最后通过解三角形可得异面直线与所成角的余弦值.
试题解析:(I)如图,设为的中点,由于,所以.
故由平面,知,
即是四面体的面上的高,
且.
在中,因为,
由勾股定理易知
故四面体的体积
(II)解法一:如答图,设分别为边的中点,则,从而是异面直线与所成的角或其补角.
设为边的中点,则,
由,知.又由(I)有,所以
又 故.
所以为二面角的平面角,由题设知
设
在,从而
因,故,从而,在中, ,
又从而在中,因,由余弦定理得
因此,异面直线与所成角的余弦值为
解法二:如下图,过作,交于,已知,
,易知两两垂直,以为原点,射线分别为轴, 轴, 轴的正半轴,建立空间直角坐标系
不妨设,由, ,
易知点的坐标分别为,则
显然向量是平面的法向量.
已知二面角为,
故可取平面的单位法向量,
使得,从而
设点的坐标为 由,取,有
易知与坐标系的建立方式不合,舍去.
因此点的坐标为
所以
从而
故异面直线与所成的角的余弦值为
练习册系列答案
相关题目
【题目】已知两个函数f(x)和g(x)的定义域和值域都是集合{1,2,3},其定义如下表:则方程g(f(x))=x的解集为( )
x | 1 | 2 | 3 |
f(x) | 2 | 3 | 1 |
x | 1 | 2 | 3 |
g(x) | 3 | 2 | 1 |
A.{1}
B.{2}
C.{3}
D.