题目内容

【题目】设函数 ,其中0<ω<2; (Ⅰ)若f(x)的最小正周期为π,求f(x)的单调增区间;
(Ⅱ)若函数f(x)的图象的一条对称轴为 ,求ω的值.

【答案】解:(Ⅰ)∵f(x)= sin2ωx+ =sin(2ωx+ )+
∵T=π,ω>0,

∴ω=1.


所以f(x)的单调增区间为:
(Ⅱ)∵ 的一条对称轴方程为


又0<ω<2,

∴k=0,

【解析】(Ⅰ)利用辅助角公式将f(x)= sin2ωx+ 化为:f(x)=sin(2ωx+ )+ ,T=π,可求得ω,从而可求f(x)的单调增区间;(Ⅱ)由f(x)的图象的一条对称轴为 ,可得到: ,从而可求得ω= k+ ,又0<ω<2,从而可求得ω.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网